二进位码的权值结构及盲搜索算法的性能

F. M. de Assis
{"title":"二进位码的权值结构及盲搜索算法的性能","authors":"F. M. de Assis","doi":"10.1109/SBRN.2000.889729","DOIUrl":null,"url":null,"abstract":"Algebraic block codes are vector linear subspaces defined over a finite field. The original problem of the block codes applied was that of protecting information against error during transmission over communication channels. However, combinatorial coding theory is an independent area of investigations. Algebraic codes own fertile geometric properties. Packing and covering radii are two important parameters of an algebraic code. In the author's previous paper (1997), two inequalities relating these parameters with thoroughness and sparsity of a blind search algorithm were established. In this paper we present a closed expression for the thoroughness of a random blind search algorithm in two cases: baseline random search and random blind search guided by an algebraic code. We interpret the \"worst case \" random search approach as a starting point for future research.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight structure of binary codes and the performance of blind search algorithms\",\"authors\":\"F. M. de Assis\",\"doi\":\"10.1109/SBRN.2000.889729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic block codes are vector linear subspaces defined over a finite field. The original problem of the block codes applied was that of protecting information against error during transmission over communication channels. However, combinatorial coding theory is an independent area of investigations. Algebraic codes own fertile geometric properties. Packing and covering radii are two important parameters of an algebraic code. In the author's previous paper (1997), two inequalities relating these parameters with thoroughness and sparsity of a blind search algorithm were established. In this paper we present a closed expression for the thoroughness of a random blind search algorithm in two cases: baseline random search and random blind search guided by an algebraic code. We interpret the \\\"worst case \\\" random search approach as a starting point for future research.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代数分组码是在有限域上定义的向量线性子空间。应用分组码的最初问题是保护信息在通信信道上传输时不受错误的影响。然而,组合编码理论是一个独立的研究领域。代数码具有丰富的几何性质。填充半径和覆盖半径是代数码的两个重要参数。在作者之前的论文(1997)中,建立了两个将这些参数与盲搜索算法的彻彻性和稀疏性联系起来的不等式。本文给出了基线随机搜索和代数码引导下随机盲搜索两种情况下随机盲搜索算法彻底性的封闭表达式。我们将“最坏情况”随机搜索方法解释为未来研究的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight structure of binary codes and the performance of blind search algorithms
Algebraic block codes are vector linear subspaces defined over a finite field. The original problem of the block codes applied was that of protecting information against error during transmission over communication channels. However, combinatorial coding theory is an independent area of investigations. Algebraic codes own fertile geometric properties. Packing and covering radii are two important parameters of an algebraic code. In the author's previous paper (1997), two inequalities relating these parameters with thoroughness and sparsity of a blind search algorithm were established. In this paper we present a closed expression for the thoroughness of a random blind search algorithm in two cases: baseline random search and random blind search guided by an algebraic code. We interpret the "worst case " random search approach as a starting point for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信