德国政治话语中的框架检测:没有大规模人工语料库标注,我们还能走多远?

Qi Yu, Anselm Fliethmann
{"title":"德国政治话语中的框架检测:没有大规模人工语料库标注,我们还能走多远?","authors":"Qi Yu, Anselm Fliethmann","doi":"10.21248/jlcl.35.2022.227","DOIUrl":null,"url":null,"abstract":"Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the “Eu-ropean Refugee Crisis” between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.","PeriodicalId":137584,"journal":{"name":"Journal for Language Technology and Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Frame Detection in German Political Discourses: How Far Can We Go Without Large-Scale Manual Corpus Annotation?\",\"authors\":\"Qi Yu, Anselm Fliethmann\",\"doi\":\"10.21248/jlcl.35.2022.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the “Eu-ropean Refugee Crisis” between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.\",\"PeriodicalId\":137584,\"journal\":{\"name\":\"Journal for Language Technology and Computational Linguistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Language Technology and Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21248/jlcl.35.2022.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Language Technology and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21248/jlcl.35.2022.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

政治话语框架的自动检测在自然语言处理(NLP)中受到越来越多的关注。然而,该领域的早期研究主要集中在使用监督机器学习方法的英语帧检测上。为了解决缺乏用于训练和/或评估低资源语言的监督模型的注释数据的困难,我们研究了两种不需要从头开始大规模手动语料库注释的NLP方法的潜力:1)基于lda的主题建模,以及2)基于新颖的专家策划框架模式的word2vec嵌入和手工框架关键字的组合。我们使用一个新的语料库来测试这些方法,该语料库由2014-2018年间关于“欧洲难民危机”的德语新闻文章组成。我们表明,虽然主题建模在检测具有高度同构词汇的数据集中的框架方面是不够的,但我们的第二种方法产生了有趣且更易于人类解释的结果。这种方法提供了一个很好的机会,将政治学领域知识和NLP技术结合起来,进行自下而上的探索性政治文本分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame Detection in German Political Discourses: How Far Can We Go Without Large-Scale Manual Corpus Annotation?
Automated detection of frames in political discourses has gained increasing attention in natural language processing (NLP). Earlier studies in this area however focus heavily on frame detection in English using supervised machine learning approaches. Addressing the difficulty of the lack of annotated data for training and/or evaluating supervised models for low-resource languages, we investigate the potential of two NLP approaches that do not require large-scale manual corpus annotation from scratch: 1) LDA-based topic modelling, and 2) a combination of word2vec embeddings and handcrafted framing keywords based on a novel, expert-curated framing schema. We test these approaches using a novel corpus consisting of German-language news articles on the “Eu-ropean Refugee Crisis” between 2014-2018. We show that while topic modelling is insufficient in detecting frames in a dataset with highly homogeneous vocabulary, our second approach yields intriguing and more humanly interpretable results. This approach offers a promising opportunity to incorporate domain knowledge from political science and NLP techniques for bottom-up, explorative political text analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信