空间数据科学中的模糊方法综述

A. Carniel, Markus Schneider
{"title":"空间数据科学中的模糊方法综述","authors":"A. Carniel, Markus Schneider","doi":"10.1109/FUZZ45933.2021.9494437","DOIUrl":null,"url":null,"abstract":"Spatial data science emerges as an important subclass of data science and focuses on extracting meaningful information and knowledge from spatial data to enable effective communication and interpretation of both spatial data and analytic results. It emphasizes the importance of location and spatial interaction by storing, analyzing, retrieving, and visualizing spatial and geometric information. Frequently, spatial objects are afflicted by spatial fuzziness, characterizing spatial objects with blurred interiors, uncertain boundaries, and imprecise locations. Fuzzy set theory and fuzzy logic have become powerful tools to adequately represent spatial fuzziness. This paper provides a survey and a review of the literature to understand the application of fuzzy approaches to spatial data science (projects) with the objective of proposing, motivating, and envisioning fuzzy spatial data science.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Survey of Fuzzy Approaches in Spatial Data Science\",\"authors\":\"A. Carniel, Markus Schneider\",\"doi\":\"10.1109/FUZZ45933.2021.9494437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial data science emerges as an important subclass of data science and focuses on extracting meaningful information and knowledge from spatial data to enable effective communication and interpretation of both spatial data and analytic results. It emphasizes the importance of location and spatial interaction by storing, analyzing, retrieving, and visualizing spatial and geometric information. Frequently, spatial objects are afflicted by spatial fuzziness, characterizing spatial objects with blurred interiors, uncertain boundaries, and imprecise locations. Fuzzy set theory and fuzzy logic have become powerful tools to adequately represent spatial fuzziness. This paper provides a survey and a review of the literature to understand the application of fuzzy approaches to spatial data science (projects) with the objective of proposing, motivating, and envisioning fuzzy spatial data science.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

空间数据科学是数据科学的一个重要分支,致力于从空间数据中提取有意义的信息和知识,以实现空间数据和分析结果的有效交流和解释。它通过存储、分析、检索和可视化空间和几何信息来强调位置和空间相互作用的重要性。通常,空间对象受到空间模糊性的困扰,空间对象具有模糊的内部、不确定的边界和不精确的位置。模糊集理论和模糊逻辑已经成为充分表征空间模糊性的有力工具。本文提供了一个调查和文献回顾,以了解模糊方法在空间数据科学(项目)中的应用,目的是提出、激励和设想模糊空间数据科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Fuzzy Approaches in Spatial Data Science
Spatial data science emerges as an important subclass of data science and focuses on extracting meaningful information and knowledge from spatial data to enable effective communication and interpretation of both spatial data and analytic results. It emphasizes the importance of location and spatial interaction by storing, analyzing, retrieving, and visualizing spatial and geometric information. Frequently, spatial objects are afflicted by spatial fuzziness, characterizing spatial objects with blurred interiors, uncertain boundaries, and imprecise locations. Fuzzy set theory and fuzzy logic have become powerful tools to adequately represent spatial fuzziness. This paper provides a survey and a review of the literature to understand the application of fuzzy approaches to spatial data science (projects) with the objective of proposing, motivating, and envisioning fuzzy spatial data science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信