{"title":"语义面会话自动分词","authors":"Dongin Jung, Yoon-Sik Cho","doi":"10.1109/ICEIC57457.2023.10049858","DOIUrl":null,"url":null,"abstract":"Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Conversation Turn-Taking Segmentation in Semantic Facet\",\"authors\":\"Dongin Jung, Yoon-Sik Cho\",\"doi\":\"10.1109/ICEIC57457.2023.10049858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.\",\"PeriodicalId\":373752,\"journal\":{\"name\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC57457.2023.10049858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Conversation Turn-Taking Segmentation in Semantic Facet
Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.