ground-truth数据集的组合扩展和分割算法的有效评价

Akhil Shah, S. Dalal
{"title":"ground-truth数据集的组合扩展和分割算法的有效评价","authors":"Akhil Shah, S. Dalal","doi":"10.1145/2304496.2304508","DOIUrl":null,"url":null,"abstract":"We propose a method to exponentially enlarge a small dataset of domain specific ground truth segmentation labels to evaluate the performance of segmentation algorithms. Furthermore, we adapt ideas from combinatorial software testing to efficiently infer statistics of segmentation performance by evaluating performance on only a certain subset of the combinatorially generated images. Extensions of this work to optimal sequence for performance testing and algorithm selection are also suggested.","PeriodicalId":196376,"journal":{"name":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","volume":"54 73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combinatorial enlargement of ground-truth datasets and efficient evaluation of segmentation algorithms\",\"authors\":\"Akhil Shah, S. Dalal\",\"doi\":\"10.1145/2304496.2304508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to exponentially enlarge a small dataset of domain specific ground truth segmentation labels to evaluate the performance of segmentation algorithms. Furthermore, we adapt ideas from combinatorial software testing to efficiently infer statistics of segmentation performance by evaluating performance on only a certain subset of the combinatorially generated images. Extensions of this work to optimal sequence for performance testing and algorithm selection are also suggested.\",\"PeriodicalId\":196376,\"journal\":{\"name\":\"International Workshop on Video and Image Ground Truth in Computer Vision Applications\",\"volume\":\"54 73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Video and Image Ground Truth in Computer Vision Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2304496.2304508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Video and Image Ground Truth in Computer Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2304496.2304508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种方法,以指数扩大一个小数据集的特定领域的地面真值分割标签,以评估分割算法的性能。此外,我们采用组合软件测试的思想,通过仅在组合生成的图像的某个子集上评估性能来有效地推断分割性能的统计数据。将此工作扩展到性能测试和算法选择的最优序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial enlargement of ground-truth datasets and efficient evaluation of segmentation algorithms
We propose a method to exponentially enlarge a small dataset of domain specific ground truth segmentation labels to evaluate the performance of segmentation algorithms. Furthermore, we adapt ideas from combinatorial software testing to efficiently infer statistics of segmentation performance by evaluating performance on only a certain subset of the combinatorially generated images. Extensions of this work to optimal sequence for performance testing and algorithm selection are also suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信