一种基于MRF的自适应去块算法

S. Xie, Zhiliang Xu
{"title":"一种基于MRF的自适应去块算法","authors":"S. Xie, Zhiliang Xu","doi":"10.1109/ICTAI.2005.31","DOIUrl":null,"url":null,"abstract":"One of the major drawbacks in block-based discrete cosine transform (BDCT) is the blocking artifacts at low bit rates. In this paper, an adaptive deblocking algorithm based on Markov random field (MRF) is proposed. A visibility function of blocking artifacts is introduced which based on human visual system (HVS), together with edge information to construct a new adaptive potential function of MRF. The experiment results show that the proposed algorithm reduces the blocking artifacts effectively and preserves the original edges faithful","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An adaptive de-blocking algorithm based on MRF\",\"authors\":\"S. Xie, Zhiliang Xu\",\"doi\":\"10.1109/ICTAI.2005.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major drawbacks in block-based discrete cosine transform (BDCT) is the blocking artifacts at low bit rates. In this paper, an adaptive deblocking algorithm based on Markov random field (MRF) is proposed. A visibility function of blocking artifacts is introduced which based on human visual system (HVS), together with edge information to construct a new adaptive potential function of MRF. The experiment results show that the proposed algorithm reduces the blocking artifacts effectively and preserves the original edges faithful\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于块的离散余弦变换(BDCT)的主要缺点之一是低比特率下的块伪影。提出了一种基于马尔可夫随机场的自适应块化算法。提出了一种基于人类视觉系统(HVS)的块伪影可见性函数,并结合边缘信息构造了一种新的自适应磁流变函数。实验结果表明,该算法有效地降低了图像的块伪影,并保持了原始边缘的忠实性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive de-blocking algorithm based on MRF
One of the major drawbacks in block-based discrete cosine transform (BDCT) is the blocking artifacts at low bit rates. In this paper, an adaptive deblocking algorithm based on Markov random field (MRF) is proposed. A visibility function of blocking artifacts is introduced which based on human visual system (HVS), together with edge information to construct a new adaptive potential function of MRF. The experiment results show that the proposed algorithm reduces the blocking artifacts effectively and preserves the original edges faithful
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信