利用气体动力学交通模型进行实时车速预测

Ruoqian Liu, Shen Xu, Jungme Park, Y. Murphey, Johannes Kristinsson, R. McGee, M. Kuang, Tony Phillips
{"title":"利用气体动力学交通模型进行实时车速预测","authors":"Ruoqian Liu, Shen Xu, Jungme Park, Y. Murphey, Johannes Kristinsson, R. McGee, M. Kuang, Tony Phillips","doi":"10.1109/CIVTS.2011.5949536","DOIUrl":null,"url":null,"abstract":"Prediction of the traffic information such as flow, density, speed, and travel time is important for traffic control systems, optimizing vehicle operations, and the individual driver. Prediction of future traffic information is a challenging problem due to many dynamic contributing factors. In this paper, macroscopic and kinetic traffic modeling approaches are investigated. We present a speed prediction algorithm, KTM-SP, based on gas-kinetic traffic modeling. Experimental results show that the proposed algorithm gave good prediction results on real traffic data.","PeriodicalId":312839,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Real time vehicle speed predition using gas-kinetic traffic modeling\",\"authors\":\"Ruoqian Liu, Shen Xu, Jungme Park, Y. Murphey, Johannes Kristinsson, R. McGee, M. Kuang, Tony Phillips\",\"doi\":\"10.1109/CIVTS.2011.5949536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of the traffic information such as flow, density, speed, and travel time is important for traffic control systems, optimizing vehicle operations, and the individual driver. Prediction of future traffic information is a challenging problem due to many dynamic contributing factors. In this paper, macroscopic and kinetic traffic modeling approaches are investigated. We present a speed prediction algorithm, KTM-SP, based on gas-kinetic traffic modeling. Experimental results show that the proposed algorithm gave good prediction results on real traffic data.\",\"PeriodicalId\":312839,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVTS.2011.5949536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVTS.2011.5949536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

预测交通信息,如流量、密度、速度和行驶时间,对交通控制系统、优化车辆操作和个体驾驶员都很重要。未来交通信息的预测是一个具有挑战性的问题,因为有许多动态的影响因素。本文研究了宏观和动态交通建模方法。我们提出了一种基于气体动力学交通模型的速度预测算法KTM-SP。实验结果表明,该算法对真实交通数据具有较好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real time vehicle speed predition using gas-kinetic traffic modeling
Prediction of the traffic information such as flow, density, speed, and travel time is important for traffic control systems, optimizing vehicle operations, and the individual driver. Prediction of future traffic information is a challenging problem due to many dynamic contributing factors. In this paper, macroscopic and kinetic traffic modeling approaches are investigated. We present a speed prediction algorithm, KTM-SP, based on gas-kinetic traffic modeling. Experimental results show that the proposed algorithm gave good prediction results on real traffic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信