自动编码器及其变体的分类性能比较

Jae-Neung Lee, Keun-Chang Kwak
{"title":"自动编码器及其变体的分类性能比较","authors":"Jae-Neung Lee, Keun-Chang Kwak","doi":"10.1109/ICSIGSYS.2017.7967042","DOIUrl":null,"url":null,"abstract":"In this paper, we present auto-encoder (AE), stacked auto-encoder (SAE) and sparse auto-encoder (SPAE) to classify gaits of horse riding for real riding coaching. The parameters of each auto-encoder are adjusted to compare the performance. The data is collected from 16 inertial sensors attached to a motion capture suit to construct a motion database. We build the motion features as the method of gaits classification with the database. The experiment shows that the performance is 95% when applied AE. SPAE was the best in terms of time and AE was the best in performance. We can apply to coaching system by each horse gait for rider under real or horse simulator environments using the SPAE algorithm.","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A performance comparison of auto-encoder and its variants for classification\",\"authors\":\"Jae-Neung Lee, Keun-Chang Kwak\",\"doi\":\"10.1109/ICSIGSYS.2017.7967042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present auto-encoder (AE), stacked auto-encoder (SAE) and sparse auto-encoder (SPAE) to classify gaits of horse riding for real riding coaching. The parameters of each auto-encoder are adjusted to compare the performance. The data is collected from 16 inertial sensors attached to a motion capture suit to construct a motion database. We build the motion features as the method of gaits classification with the database. The experiment shows that the performance is 95% when applied AE. SPAE was the best in terms of time and AE was the best in performance. We can apply to coaching system by each horse gait for rider under real or horse simulator environments using the SPAE algorithm.\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了自编码器(AE)、堆叠式自编码器(SAE)和稀疏式自编码器(SPAE)对真实骑马训练中的步态进行分类。调整每个自编码器的参数以比较性能。数据由附着在运动捕捉服上的16个惯性传感器收集,以构建运动数据库。我们利用数据库构建运动特征作为步态分类的方法。实验表明,应用声发射技术后,该系统的性能达到95%。SPAE在时间上最好,AE在性能上最好。我们可以将SPAE算法应用于骑手在真实或模拟环境下的每匹马步态训练系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A performance comparison of auto-encoder and its variants for classification
In this paper, we present auto-encoder (AE), stacked auto-encoder (SAE) and sparse auto-encoder (SPAE) to classify gaits of horse riding for real riding coaching. The parameters of each auto-encoder are adjusted to compare the performance. The data is collected from 16 inertial sensors attached to a motion capture suit to construct a motion database. We build the motion features as the method of gaits classification with the database. The experiment shows that the performance is 95% when applied AE. SPAE was the best in terms of time and AE was the best in performance. We can apply to coaching system by each horse gait for rider under real or horse simulator environments using the SPAE algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信