平滑降噪:噪声存在下基于proony的稀疏模式恢复

Jon Oñativia, Yue M. Lu, P. Dragotti
{"title":"平滑降噪:噪声存在下基于proony的稀疏模式恢复","authors":"Jon Oñativia, Yue M. Lu, P. Dragotti","doi":"10.1109/ICASSP.2016.7472445","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm - ProSparse Denoise - that can solve the sparsity recovery problem in the presence of noise when the dictionary is the union of Fourier and identity matrices. The algorithm is based on a proper use of Cadzow routine and Prony's method and exploits the duality of Fourier and identity matrices. The algorithm has low complexity compared to state of the art algorithms for sparse recovery since it relies on the Fast Fourier Transform (FFT) algorithm. We provide conditions on the noise that guarantees the correct recovery of the sparsity pattern. Our approach outperforms state of the art algorithms such as Basis Pursuit De-noise and Subspace Pursuit when the dictionary is the union of Fourier and identity matrices.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prosparse denoise: Prony's based sparse pattern recovery in the presence of noise\",\"authors\":\"Jon Oñativia, Yue M. Lu, P. Dragotti\",\"doi\":\"10.1109/ICASSP.2016.7472445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm - ProSparse Denoise - that can solve the sparsity recovery problem in the presence of noise when the dictionary is the union of Fourier and identity matrices. The algorithm is based on a proper use of Cadzow routine and Prony's method and exploits the duality of Fourier and identity matrices. The algorithm has low complexity compared to state of the art algorithms for sparse recovery since it relies on the Fast Fourier Transform (FFT) algorithm. We provide conditions on the noise that guarantees the correct recovery of the sparsity pattern. Our approach outperforms state of the art algorithms such as Basis Pursuit De-noise and Subspace Pursuit when the dictionary is the union of Fourier and identity matrices.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的算法——平滑降噪算法,该算法可以解决当字典是傅里叶矩阵和单位矩阵的并集时存在噪声的稀疏恢复问题。该算法在适当使用Cadzow例程和proony方法的基础上,充分利用了傅里叶矩阵和单位矩阵的对偶性。该算法基于快速傅里叶变换(FFT)算法,与现有稀疏恢复算法相比具有较低的复杂度。我们提供了保证稀疏模式正确恢复的噪声条件。当字典是傅里叶矩阵和单位矩阵的并集时,我们的方法优于当前最先进的算法,如基追踪去噪和子空间追踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prosparse denoise: Prony's based sparse pattern recovery in the presence of noise
We present a novel algorithm - ProSparse Denoise - that can solve the sparsity recovery problem in the presence of noise when the dictionary is the union of Fourier and identity matrices. The algorithm is based on a proper use of Cadzow routine and Prony's method and exploits the duality of Fourier and identity matrices. The algorithm has low complexity compared to state of the art algorithms for sparse recovery since it relies on the Fast Fourier Transform (FFT) algorithm. We provide conditions on the noise that guarantees the correct recovery of the sparsity pattern. Our approach outperforms state of the art algorithms such as Basis Pursuit De-noise and Subspace Pursuit when the dictionary is the union of Fourier and identity matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信