跨空间频率自适应对速度判别的影响

Yue Chen, H. Bedell, L. Frishman
{"title":"跨空间频率自适应对速度判别的影响","authors":"Yue Chen, H. Bedell, L. Frishman","doi":"10.1364/vsia.1996.sad.2","DOIUrl":null,"url":null,"abstract":"The coding of stimulus speed has been accepted to be an important component of motion processing in the visual system. How this coding is implemented, however, is still not entirely clear. In terms of its relationship with spatial and temporal contents of moving targets, speed processing is often modeled as a two-stage process (e.g. Heeger, 1990; Smith & Edgar, 1994). In the first stage, initial speed estimates are generated within individual spatial- and temporal-frequency-tuned mechanism. In the second stage, the outputs of multiple spatio-temporal frequency mechanisms from the first stage are combined to produce the speed codes that are then invariant with respect to spatial frequency. This descriptive model for speed coding makes sense from both functional and experimental perspectives. Functionally, speed coding in the visual system should not vary with respect to spatial frequency; otherwise, non-identical speed coding among spatial frequency mechanisms would perceptually make the different spatial frequency components of a single target appear to move incoherently. Experimentally, it has been demonstrated that whereas the responses of neurons at early stages, such as in VI, are spatial-frequency-tuned, the responses of some neurons at later stages, such as in MT, have broader spatial frequency bandwidths (Newsome, Gizzi & Movshon, 1983), which presumably represent the combination of inputs from several lower-level spatial frequency mechanisms.","PeriodicalId":428257,"journal":{"name":"Vision Science and its Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Cross-Spatial-Frequency Adaptation on Speed Discrimination\",\"authors\":\"Yue Chen, H. Bedell, L. Frishman\",\"doi\":\"10.1364/vsia.1996.sad.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coding of stimulus speed has been accepted to be an important component of motion processing in the visual system. How this coding is implemented, however, is still not entirely clear. In terms of its relationship with spatial and temporal contents of moving targets, speed processing is often modeled as a two-stage process (e.g. Heeger, 1990; Smith & Edgar, 1994). In the first stage, initial speed estimates are generated within individual spatial- and temporal-frequency-tuned mechanism. In the second stage, the outputs of multiple spatio-temporal frequency mechanisms from the first stage are combined to produce the speed codes that are then invariant with respect to spatial frequency. This descriptive model for speed coding makes sense from both functional and experimental perspectives. Functionally, speed coding in the visual system should not vary with respect to spatial frequency; otherwise, non-identical speed coding among spatial frequency mechanisms would perceptually make the different spatial frequency components of a single target appear to move incoherently. Experimentally, it has been demonstrated that whereas the responses of neurons at early stages, such as in VI, are spatial-frequency-tuned, the responses of some neurons at later stages, such as in MT, have broader spatial frequency bandwidths (Newsome, Gizzi & Movshon, 1983), which presumably represent the combination of inputs from several lower-level spatial frequency mechanisms.\",\"PeriodicalId\":428257,\"journal\":{\"name\":\"Vision Science and its Applications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Science and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/vsia.1996.sad.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Science and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/vsia.1996.sad.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

刺激速度编码是视觉系统运动处理的重要组成部分。然而,这种编码是如何实现的,仍然不完全清楚。就其与运动目标的时空内容的关系而言,速度处理通常被建模为两个阶段的过程(例如Heeger, 1990;史密斯和埃德加,1994)。在第一阶段,在单个空间和时间频率调谐机制中生成初始速度估计。在第二阶段,将第一阶段的多个时空频率机制的输出组合起来,产生相对于空间频率不变的速度代码。从功能和实验的角度来看,这个描述速度编码的模型是有意义的。从功能上讲,视觉系统中的速度编码不应随空间频率而变化;否则,不同空间频率机制之间的速度编码不一致会使单个目标的不同空间频率分量在感知上呈现出不相干的运动。实验表明,尽管神经元在早期阶段的反应,如在VI中,是空间频率调谐的,但一些神经元在后期阶段的反应,如在MT中,具有更宽的空间频率带宽(Newsome, Gizzi & Movshon, 1983),这可能代表了来自几个较低水平空间频率机制的输入的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effects of Cross-Spatial-Frequency Adaptation on Speed Discrimination
The coding of stimulus speed has been accepted to be an important component of motion processing in the visual system. How this coding is implemented, however, is still not entirely clear. In terms of its relationship with spatial and temporal contents of moving targets, speed processing is often modeled as a two-stage process (e.g. Heeger, 1990; Smith & Edgar, 1994). In the first stage, initial speed estimates are generated within individual spatial- and temporal-frequency-tuned mechanism. In the second stage, the outputs of multiple spatio-temporal frequency mechanisms from the first stage are combined to produce the speed codes that are then invariant with respect to spatial frequency. This descriptive model for speed coding makes sense from both functional and experimental perspectives. Functionally, speed coding in the visual system should not vary with respect to spatial frequency; otherwise, non-identical speed coding among spatial frequency mechanisms would perceptually make the different spatial frequency components of a single target appear to move incoherently. Experimentally, it has been demonstrated that whereas the responses of neurons at early stages, such as in VI, are spatial-frequency-tuned, the responses of some neurons at later stages, such as in MT, have broader spatial frequency bandwidths (Newsome, Gizzi & Movshon, 1983), which presumably represent the combination of inputs from several lower-level spatial frequency mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信