基于结构的XML文档挖掘

M. G. Duaimi, Yasir Abd Alhamed
{"title":"基于结构的XML文档挖掘","authors":"M. G. Duaimi, Yasir Abd Alhamed","doi":"10.26483/IJARCS.V4I10.1886","DOIUrl":null,"url":null,"abstract":"With the growing number of XML documents on the Web it becomes essential to effectively organize these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. This paper presents a framework for clustering XML documents by structure. Modelling the XML documents as rooted ordered labeled trees, we study the usage of structural distance metrics in hierarchical clustering algorithms to detect groups of structurally similar XML documents. We suggest the usage of structural summaries for trees to improve the performance of the distance calculation and at the same time to maintain or even improve its quality.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining XML Document Based on Structure\",\"authors\":\"M. G. Duaimi, Yasir Abd Alhamed\",\"doi\":\"10.26483/IJARCS.V4I10.1886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing number of XML documents on the Web it becomes essential to effectively organize these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. This paper presents a framework for clustering XML documents by structure. Modelling the XML documents as rooted ordered labeled trees, we study the usage of structural distance metrics in hierarchical clustering algorithms to detect groups of structurally similar XML documents. We suggest the usage of structural summaries for trees to improve the performance of the distance calculation and at the same time to maintain or even improve its quality.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26483/IJARCS.V4I10.1886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/IJARCS.V4I10.1886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着Web上XML文档数量的增长,有效地组织这些XML文档以便从中检索有用的信息变得至关重要。一种可能的解决方案是在XML文档上应用聚类来发现知识,从而促进有效的数据管理、信息检索和查询处理。本文提出了一个基于结构的XML文档聚类框架。将XML文档建模为有根有序的标记树,研究了在层次聚类算法中使用结构距离度量来检测结构相似的XML文档组。我们建议使用树的结构摘要来提高距离计算的性能,同时保持甚至提高距离计算的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining XML Document Based on Structure
With the growing number of XML documents on the Web it becomes essential to effectively organize these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. This paper presents a framework for clustering XML documents by structure. Modelling the XML documents as rooted ordered labeled trees, we study the usage of structural distance metrics in hierarchical clustering algorithms to detect groups of structurally similar XML documents. We suggest the usage of structural summaries for trees to improve the performance of the distance calculation and at the same time to maintain or even improve its quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信