基于形态学支持向量机分类模型的垃圾图像处理

Miftahuddin Fahmi, A. Yudhana, S. Sunardi
{"title":"基于形态学支持向量机分类模型的垃圾图像处理","authors":"Miftahuddin Fahmi, A. Yudhana, S. Sunardi","doi":"10.30812/matrik.v22i3.2819","DOIUrl":null,"url":null,"abstract":"Sorting waste has always been an important part of managing waste. The primary issue with the waste sorting process has been the discomfort caused by prolonged contact with waste odor. A machinelearning method for identifying waste types was created to address this issue. The study’s goal was to create machine learning to solve waste management challenges by applying the most accurate categorization model available. The research approach was the quantitative analysis of the classification model accuracy. The Kaggle dataset was used to collect and curate data, which was subsequently preprocessed using the morphology approach. Based on picture sources, the data was trained and used to classify waste. The Support Vector Machine model was used in this investigation and feature extraction via the Convolutional Neural Network. The results showed that the system categorized waste successfully, with an accuracy of 99.30% and a loss of 2.47% across all categories. According to the findings of this study, SVM combined with morphological image processing functioned as a strong classification model, with a remarkable accuracy rate of 99.30%. This study’s outcomes contributed to waste management by giving an efficient and dependable waste classification solution compared to many previous studies.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image\",\"authors\":\"Miftahuddin Fahmi, A. Yudhana, S. Sunardi\",\"doi\":\"10.30812/matrik.v22i3.2819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorting waste has always been an important part of managing waste. The primary issue with the waste sorting process has been the discomfort caused by prolonged contact with waste odor. A machinelearning method for identifying waste types was created to address this issue. The study’s goal was to create machine learning to solve waste management challenges by applying the most accurate categorization model available. The research approach was the quantitative analysis of the classification model accuracy. The Kaggle dataset was used to collect and curate data, which was subsequently preprocessed using the morphology approach. Based on picture sources, the data was trained and used to classify waste. The Support Vector Machine model was used in this investigation and feature extraction via the Convolutional Neural Network. The results showed that the system categorized waste successfully, with an accuracy of 99.30% and a loss of 2.47% across all categories. According to the findings of this study, SVM combined with morphological image processing functioned as a strong classification model, with a remarkable accuracy rate of 99.30%. This study’s outcomes contributed to waste management by giving an efficient and dependable waste classification solution compared to many previous studies.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v22i3.2819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i3.2819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

垃圾分类一直是垃圾管理的重要组成部分。垃圾分类过程的主要问题是由于长时间接触垃圾气味而引起的不适。为了解决这个问题,创建了一种识别废物类型的机器学习方法。该研究的目标是创建机器学习,通过应用最准确的分类模型来解决废物管理方面的挑战。研究方法是对分类模型精度进行定量分析。Kaggle数据集用于收集和整理数据,随后使用形态学方法对数据进行预处理。基于图片来源,对数据进行训练并用于废物分类。本研究采用支持向量机模型,并通过卷积神经网络进行特征提取。结果表明,该系统分类成功,所有类别的准确率为99.30%,损失率为2.47%。本研究结果表明,SVM结合形态学图像处理是一种较强的分类模型,准确率达到99.30%。与以往的许多研究相比,本研究的结果通过提供高效可靠的废物分类解决方案,为废物管理做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Processing Using Morphology on Support Vector Machine Classification Model for Waste Image
Sorting waste has always been an important part of managing waste. The primary issue with the waste sorting process has been the discomfort caused by prolonged contact with waste odor. A machinelearning method for identifying waste types was created to address this issue. The study’s goal was to create machine learning to solve waste management challenges by applying the most accurate categorization model available. The research approach was the quantitative analysis of the classification model accuracy. The Kaggle dataset was used to collect and curate data, which was subsequently preprocessed using the morphology approach. Based on picture sources, the data was trained and used to classify waste. The Support Vector Machine model was used in this investigation and feature extraction via the Convolutional Neural Network. The results showed that the system categorized waste successfully, with an accuracy of 99.30% and a loss of 2.47% across all categories. According to the findings of this study, SVM combined with morphological image processing functioned as a strong classification model, with a remarkable accuracy rate of 99.30%. This study’s outcomes contributed to waste management by giving an efficient and dependable waste classification solution compared to many previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信