Gromov收缩不等式中常数的线性界及相关结果

A. Nabutovsky
{"title":"Gromov收缩不等式中常数的线性界及相关结果","authors":"A. Nabutovsky","doi":"10.2140/gt.2022.26.3123","DOIUrl":null,"url":null,"abstract":"Let $M^n$ be a closed Riemannian manifold. Larry Guth proved that there exists $c(n)$ with the following property: if for some $r>0$ the volume of each metric ball of radius $r$ is less than $({r\\over c(n)})^n$, then there exists a continuous map from $M^n$ to a $(n-1)$-dimensional simplicial complex such that the inverse image of each point can be covered by a metric ball of radius $r$ in $M^n$. It was previously proven by Misha Gromov that this result would imply two famous Gromov's inequalities: $Fill Rad(M^n)\\leq c(n)vol(M^n)^{1\\over n}$ and, if $M^n$ is essential, then also $sys_1(M^n)\\leq 6c(n)vol(M^n)^{1\\over n}$ with the same constant $c(n)$. Here $sys_1(M^n)$ denotes the length of a shortest non-contractible curve in $M^n$. \nHere we prove that these results hold with $c(n)=n$. All previously known upper bounds for $c(n)$ were exponential in $n$. The proof uses ideas of Guth from [Gu 10] and of Panos Papasoglu from his recent work [P].","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Linear bounds for constants in Gromov’s\\nsystolic inequality and related results\",\"authors\":\"A. Nabutovsky\",\"doi\":\"10.2140/gt.2022.26.3123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M^n$ be a closed Riemannian manifold. Larry Guth proved that there exists $c(n)$ with the following property: if for some $r>0$ the volume of each metric ball of radius $r$ is less than $({r\\\\over c(n)})^n$, then there exists a continuous map from $M^n$ to a $(n-1)$-dimensional simplicial complex such that the inverse image of each point can be covered by a metric ball of radius $r$ in $M^n$. It was previously proven by Misha Gromov that this result would imply two famous Gromov's inequalities: $Fill Rad(M^n)\\\\leq c(n)vol(M^n)^{1\\\\over n}$ and, if $M^n$ is essential, then also $sys_1(M^n)\\\\leq 6c(n)vol(M^n)^{1\\\\over n}$ with the same constant $c(n)$. Here $sys_1(M^n)$ denotes the length of a shortest non-contractible curve in $M^n$. \\nHere we prove that these results hold with $c(n)=n$. All previously known upper bounds for $c(n)$ were exponential in $n$. The proof uses ideas of Guth from [Gu 10] and of Panos Papasoglu from his recent work [P].\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.3123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.3123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

设$M^n$为封闭黎曼流形。Larry Guth证明了存在$c(n)$,并证明了以下性质:如果对于某$r>0$,半径为$r$的每个度量球的体积小于$({r\over c(n)})^n$,则存在从$M^n$到$(n-1)$维的简单复形的连续映射,使得$M^n$中每个点的逆像都可以被半径为$r$的度量球覆盖。先前由Misha Gromov证明,这个结果将隐含两个著名的Gromov不等式:$Fill Rad(M^n)\leq c(n)vol(M^n)^{1\over n}$和,如果$M^n$是必要的,那么$sys_1(M^n)\leq 6c(n)vol(M^n)^{1\over n}$也具有相同的常数$c(n)$。其中$sys_1(M^n)$表示$M^n$中最短不可收缩曲线的长度。这里我们用$c(n)=n$证明了这些结果是成立的。所有先前已知的$c(n)$的上界都是$n$的指数。该证明使用了Guth [Gu 10]和Panos Papasoglu [P]的思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear bounds for constants in Gromov’s systolic inequality and related results
Let $M^n$ be a closed Riemannian manifold. Larry Guth proved that there exists $c(n)$ with the following property: if for some $r>0$ the volume of each metric ball of radius $r$ is less than $({r\over c(n)})^n$, then there exists a continuous map from $M^n$ to a $(n-1)$-dimensional simplicial complex such that the inverse image of each point can be covered by a metric ball of radius $r$ in $M^n$. It was previously proven by Misha Gromov that this result would imply two famous Gromov's inequalities: $Fill Rad(M^n)\leq c(n)vol(M^n)^{1\over n}$ and, if $M^n$ is essential, then also $sys_1(M^n)\leq 6c(n)vol(M^n)^{1\over n}$ with the same constant $c(n)$. Here $sys_1(M^n)$ denotes the length of a shortest non-contractible curve in $M^n$. Here we prove that these results hold with $c(n)=n$. All previously known upper bounds for $c(n)$ were exponential in $n$. The proof uses ideas of Guth from [Gu 10] and of Panos Papasoglu from his recent work [P].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信