寻找最短的奇洞

M. Chudnovsky, A. Scott, P. Seymour
{"title":"寻找最短的奇洞","authors":"M. Chudnovsky, A. Scott, P. Seymour","doi":"10.1145/3447869","DOIUrl":null,"url":null,"abstract":"An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finding a Shortest Odd Hole\",\"authors\":\"M. Chudnovsky, A. Scott, P. Seymour\",\"doi\":\"10.1145/3447869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

图中的奇孔是奇长度大于3的诱导循环。在之前的一篇论文中(与Sophie Spirkl合作),解决了一个长期存在的开放问题,我们给出了一个多项式时间算法来测试一个图是否有一个奇洞。我们随后证明,对于每一个t,存在一个多项式时间算法来测试一个图是否包含长度至少为t的奇洞。在本文中,我们给出了一个算法,如果存在一个最短的奇洞,则找到一个最短的奇洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding a Shortest Odd Hole
An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信