{"title":"寻找最短的奇洞","authors":"M. Chudnovsky, A. Scott, P. Seymour","doi":"10.1145/3447869","DOIUrl":null,"url":null,"abstract":"An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finding a Shortest Odd Hole\",\"authors\":\"M. Chudnovsky, A. Scott, P. Seymour\",\"doi\":\"10.1145/3447869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An odd hole in a graph is an induced cycle with odd length greater than 3. In an earlier paper (with Sophie Spirkl), solving a longstanding open problem, we gave a polynomial-time algorithm to test if a graph has an odd hole. We subsequently showed that, for every t, there is a polynomial-time algorithm to test whether a graph contains an odd hole of length at least t. In this article, we give an algorithm that finds a shortest odd hole, if one exists.