{"title":"外加电场作用下盐溶液中离聚体纤毛的模拟驱动","authors":"A. Boldini, M. Rosen, Youngsu Cha, M. Porfiri","doi":"10.1115/dscc2019-9060","DOIUrl":null,"url":null,"abstract":"\n A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Actuation of Ionomer Cilia in Salt Solution Under an External Electric Field\",\"authors\":\"A. Boldini, M. Rosen, Youngsu Cha, M. Porfiri\",\"doi\":\"10.1115/dscc2019-9060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Actuation of Ionomer Cilia in Salt Solution Under an External Electric Field
A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.