外加电场作用下盐溶液中离聚体纤毛的模拟驱动

A. Boldini, M. Rosen, Youngsu Cha, M. Porfiri
{"title":"外加电场作用下盐溶液中离聚体纤毛的模拟驱动","authors":"A. Boldini, M. Rosen, Youngsu Cha, M. Porfiri","doi":"10.1115/dscc2019-9060","DOIUrl":null,"url":null,"abstract":"\n A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Actuation of Ionomer Cilia in Salt Solution Under an External Electric Field\",\"authors\":\"A. Boldini, M. Rosen, Youngsu Cha, M. Porfiri\",\"doi\":\"10.1115/dscc2019-9060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,拉斯维加斯内华达大学的Kim小组进行了一项实验,展示了在盐溶液中激活离子分子纤毛的可能性。当这些致动器被放置在两个外部电极之间,外加一个小电压,它们就会向阴极移动。这与离子聚合物金属复合材料形成鲜明对比,在离子聚合物金属复合材料中,同样的离聚体被金属电极镀上,但会向阳极弯曲。在这里,我们试图通过一个基于物理的驱动模型来揭示盐溶液中离聚体纤毛运动的因素。在我们的模型中,电化学是通过泊松-能-普朗克系统描述的,根据阳离子和阴离子的浓度和电压。通过有限元分析,我们确定麦克斯韦应力是纤毛运动的主要驱动力。这项研究是了解离子分子纤毛在盐溶液中的运动的第一次努力,这反过来可能有助于阐明离子聚合物金属复合材料中驱动的物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Actuation of Ionomer Cilia in Salt Solution Under an External Electric Field
A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信