基于时空重采样和贝叶斯融合的视频建模

Yunfei Zheng, Xin Li
{"title":"基于时空重采样和贝叶斯融合的视频建模","authors":"Yunfei Zheng, Xin Li","doi":"10.1109/ICIP.2007.4379607","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an empirical Bayesian approach toward video modeling and demonstrate its application in multiframe image restoration. Based on our previous work on spatio-temporall adaptive localized learning (STALL), we introduce a new concept of spatio-temporal resampling to facilitate the task of video modeling. Resampling produces a redundant representation of video signals with distributed spatio-temporal characteristics. When combined with STALL model, we show how to probabilistically combine the linear regression results of resampled video signals under a Bayesian framework. Such empirical Bayesian approach opens the door to develop a whole new class of video processing algorithms without explicit motion estimation or segmentation. The potential of our distributed video model is justified by considering its application into two multiframe image restoration tasks: repair damaged blocks and remove impulse noise.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Video Modeling by Spatio-Temporal Resampling and Bayesian Fusion\",\"authors\":\"Yunfei Zheng, Xin Li\",\"doi\":\"10.1109/ICIP.2007.4379607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an empirical Bayesian approach toward video modeling and demonstrate its application in multiframe image restoration. Based on our previous work on spatio-temporall adaptive localized learning (STALL), we introduce a new concept of spatio-temporal resampling to facilitate the task of video modeling. Resampling produces a redundant representation of video signals with distributed spatio-temporal characteristics. When combined with STALL model, we show how to probabilistically combine the linear regression results of resampled video signals under a Bayesian framework. Such empirical Bayesian approach opens the door to develop a whole new class of video processing algorithms without explicit motion estimation or segmentation. The potential of our distributed video model is justified by considering its application into two multiframe image restoration tasks: repair damaged blocks and remove impulse noise.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种经验贝叶斯视频建模方法,并演示了其在多帧图像恢复中的应用。在前人研究时空自适应定位学习(STALL)的基础上,提出了时空重采样的概念,以促进视频建模。重采样产生具有分布时空特征的视频信号的冗余表示。当与STALL模型相结合时,我们展示了如何在贝叶斯框架下概率地组合重采样视频信号的线性回归结果。这种经验贝叶斯方法为开发一种全新的视频处理算法打开了大门,而不需要明确的运动估计或分割。考虑到分布式视频模型在两个多帧图像恢复任务中的应用:修复损坏的块和去除脉冲噪声,证明了分布式视频模型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Modeling by Spatio-Temporal Resampling and Bayesian Fusion
In this paper, we propose an empirical Bayesian approach toward video modeling and demonstrate its application in multiframe image restoration. Based on our previous work on spatio-temporall adaptive localized learning (STALL), we introduce a new concept of spatio-temporal resampling to facilitate the task of video modeling. Resampling produces a redundant representation of video signals with distributed spatio-temporal characteristics. When combined with STALL model, we show how to probabilistically combine the linear regression results of resampled video signals under a Bayesian framework. Such empirical Bayesian approach opens the door to develop a whole new class of video processing algorithms without explicit motion estimation or segmentation. The potential of our distributed video model is justified by considering its application into two multiframe image restoration tasks: repair damaged blocks and remove impulse noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信