可重构体系结构的最佳时间划分和综合

Meenakshi Kaul, R. Vemuri
{"title":"可重构体系结构的最佳时间划分和综合","authors":"Meenakshi Kaul, R. Vemuri","doi":"10.1109/DATE.1998.655887","DOIUrl":null,"url":null,"abstract":"We develop a 0-1 non-linear programming (NLP) model for combined temporal partitioning and high-level synthesis from behavioral specifications destined to be implemented on reconfigurable processors. We present tight linearizations of the NLP model. We present effective variable selection heuristics for a branch and bound solution of the derived linear programming model. We show how tight linearizations combined with good variable selection techniques during branch and bound yield optimal results in relatively short execution times.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Optimal temporal partitioning and synthesis for reconfigurable architectures\",\"authors\":\"Meenakshi Kaul, R. Vemuri\",\"doi\":\"10.1109/DATE.1998.655887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a 0-1 non-linear programming (NLP) model for combined temporal partitioning and high-level synthesis from behavioral specifications destined to be implemented on reconfigurable processors. We present tight linearizations of the NLP model. We present effective variable selection heuristics for a branch and bound solution of the derived linear programming model. We show how tight linearizations combined with good variable selection techniques during branch and bound yield optimal results in relatively short execution times.\",\"PeriodicalId\":179207,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.1998.655887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

我们开发了一个0-1非线性规划(NLP)模型,用于结合时间划分和高级综合的行为规范,这些规范注定要在可重构处理器上实现。我们提出了NLP模型的紧密线性化。给出了线性规划模型分支定界解的有效变量选择启发式算法。我们展示了在分支和绑定期间紧密线性化与良好的变量选择技术相结合如何在相对较短的执行时间内产生最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal temporal partitioning and synthesis for reconfigurable architectures
We develop a 0-1 non-linear programming (NLP) model for combined temporal partitioning and high-level synthesis from behavioral specifications destined to be implemented on reconfigurable processors. We present tight linearizations of the NLP model. We present effective variable selection heuristics for a branch and bound solution of the derived linear programming model. We show how tight linearizations combined with good variable selection techniques during branch and bound yield optimal results in relatively short execution times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信