{"title":"基于兴趣转移模型的个性化标签推荐方法","authors":"Yue Liu, Nan Yang, Gang Yang","doi":"10.1109/WISA.2012.43","DOIUrl":null,"url":null,"abstract":"Recently, social tagging systems become more and more popular in many Web 2.0 applications. In such systems, Users are allowed to annotate a particular resource with a freely chosen a set of tags. These user-generated tags can represent users' interests more concise and closer to human understanding. Interests will change over time. Thus, how to describe users' interests and interests transfer path become a big challenge for personalized recommendation systems. In this approach, we propose a variable-length time interval division algorithm and user interest model based on time interval. Then, in order to draw users' interests transfer path over a specific time period, we suggest interest transfer model. After that, we apply a classical community partition algorithm in our approach to separate users into communities. Finally, we raise a novel method to measure users' similarities based on interest transfer model and provide personalized tag recommendation according to similar users' interests in their next time intervals. Experimental results demonstrate the higher precision and recall with our approach than classical user-based collaborative filtering methods.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Approach for Personalized Tag Recommendation Based on Interest Transfer Model\",\"authors\":\"Yue Liu, Nan Yang, Gang Yang\",\"doi\":\"10.1109/WISA.2012.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, social tagging systems become more and more popular in many Web 2.0 applications. In such systems, Users are allowed to annotate a particular resource with a freely chosen a set of tags. These user-generated tags can represent users' interests more concise and closer to human understanding. Interests will change over time. Thus, how to describe users' interests and interests transfer path become a big challenge for personalized recommendation systems. In this approach, we propose a variable-length time interval division algorithm and user interest model based on time interval. Then, in order to draw users' interests transfer path over a specific time period, we suggest interest transfer model. After that, we apply a classical community partition algorithm in our approach to separate users into communities. Finally, we raise a novel method to measure users' similarities based on interest transfer model and provide personalized tag recommendation according to similar users' interests in their next time intervals. Experimental results demonstrate the higher precision and recall with our approach than classical user-based collaborative filtering methods.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach for Personalized Tag Recommendation Based on Interest Transfer Model
Recently, social tagging systems become more and more popular in many Web 2.0 applications. In such systems, Users are allowed to annotate a particular resource with a freely chosen a set of tags. These user-generated tags can represent users' interests more concise and closer to human understanding. Interests will change over time. Thus, how to describe users' interests and interests transfer path become a big challenge for personalized recommendation systems. In this approach, we propose a variable-length time interval division algorithm and user interest model based on time interval. Then, in order to draw users' interests transfer path over a specific time period, we suggest interest transfer model. After that, we apply a classical community partition algorithm in our approach to separate users into communities. Finally, we raise a novel method to measure users' similarities based on interest transfer model and provide personalized tag recommendation according to similar users' interests in their next time intervals. Experimental results demonstrate the higher precision and recall with our approach than classical user-based collaborative filtering methods.