{"title":"一元流函数的连续性","authors":"Venanzio Capretta, Jonathan Fowler","doi":"10.1109/LICS.2017.8005119","DOIUrl":null,"url":null,"abstract":"Brouwer's continuity principle states that all functions from infinite sequences of naturals to naturals are continuous, that is, for every sequence the result depends only on a finite initial segment. It is an intuitionistic axiom that is incompatible with classical mathematics. Recently Martín Escardó proved that it is also inconsistent in type theory.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The continuity of monadic stream functions\",\"authors\":\"Venanzio Capretta, Jonathan Fowler\",\"doi\":\"10.1109/LICS.2017.8005119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brouwer's continuity principle states that all functions from infinite sequences of naturals to naturals are continuous, that is, for every sequence the result depends only on a finite initial segment. It is an intuitionistic axiom that is incompatible with classical mathematics. Recently Martín Escardó proved that it is also inconsistent in type theory.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brouwer's continuity principle states that all functions from infinite sequences of naturals to naturals are continuous, that is, for every sequence the result depends only on a finite initial segment. It is an intuitionistic axiom that is incompatible with classical mathematics. Recently Martín Escardó proved that it is also inconsistent in type theory.