使用ANFIS和混合ANFIS机器学习模型估计FRP与混凝土之间的粘结强度

Thuy-Anh Nguyen, H. Ly
{"title":"使用ANFIS和混合ANFIS机器学习模型估计FRP与混凝土之间的粘结强度","authors":"Thuy-Anh Nguyen, H. Ly","doi":"10.58845/jstt.utt.2021.en9","DOIUrl":null,"url":null,"abstract":"Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) algorithms were utilized to produce numerical tools for predicting the bond strength between the concrete surface and carbon fiber reinforced polymer (CFRP) sheets. From the relevant literature, a credible database encompassing 242 test specimens was developed, along with six input factors that primarily determine bond strength. These characteristics include the beam's width, the compressive strength of the concrete, the FRP thickness, the FRP modulus of elasticity, the FRP length, and the FRP width. Finally, using conventional statistical metrics, the outputs of the two suggested models (ANFIS and ANFIS-PSO) were compared to the experimental data. Both models were shown to be a good alternative strategy for predicting the bond strength of FRP-to-concrete.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of the bond strength between FRP and concrete using ANFIS and hybridized ANFIS machine learning models\",\"authors\":\"Thuy-Anh Nguyen, H. Ly\",\"doi\":\"10.58845/jstt.utt.2021.en9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) algorithms were utilized to produce numerical tools for predicting the bond strength between the concrete surface and carbon fiber reinforced polymer (CFRP) sheets. From the relevant literature, a credible database encompassing 242 test specimens was developed, along with six input factors that primarily determine bond strength. These characteristics include the beam's width, the compressive strength of the concrete, the FRP thickness, the FRP modulus of elasticity, the FRP length, and the FRP width. Finally, using conventional statistical metrics, the outputs of the two suggested models (ANFIS and ANFIS-PSO) were compared to the experimental data. Both models were shown to be a good alternative strategy for predicting the bond strength of FRP-to-concrete.\",\"PeriodicalId\":117856,\"journal\":{\"name\":\"Journal of Science and Transport Technology\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Transport Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58845/jstt.utt.2021.en9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2021.en9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用自适应神经模糊推理系统(ANFIS)和粒子群优化算法(PSO)生成了预测混凝土表面与碳纤维增强聚合物(CFRP)板之间粘结强度的数值工具。根据相关文献,建立了一个包含242个试件的可靠数据库,以及主要决定粘结强度的六个输入因素。这些特性包括梁的宽度、混凝土的抗压强度、FRP厚度、FRP弹性模量、FRP长度和FRP宽度。最后,使用常规统计指标,将两种建议模型(ANFIS和ANFIS- pso)的输出与实验数据进行比较。这两个模型都被证明是预测frp与混凝土粘结强度的一个很好的替代策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of the bond strength between FRP and concrete using ANFIS and hybridized ANFIS machine learning models
Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) algorithms were utilized to produce numerical tools for predicting the bond strength between the concrete surface and carbon fiber reinforced polymer (CFRP) sheets. From the relevant literature, a credible database encompassing 242 test specimens was developed, along with six input factors that primarily determine bond strength. These characteristics include the beam's width, the compressive strength of the concrete, the FRP thickness, the FRP modulus of elasticity, the FRP length, and the FRP width. Finally, using conventional statistical metrics, the outputs of the two suggested models (ANFIS and ANFIS-PSO) were compared to the experimental data. Both models were shown to be a good alternative strategy for predicting the bond strength of FRP-to-concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信