基于相对姿态约束的立体视觉惯性里程测量快速初始化

J. Jung, J. Y. Chung, Jaehyuck Cha, Chan Gook Park
{"title":"基于相对姿态约束的立体视觉惯性里程测量快速初始化","authors":"J. Jung, J. Y. Chung, Jaehyuck Cha, Chan Gook Park","doi":"10.1109/ICCA.2019.8899485","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an initialization method to bootstrap a visual-inertial odometry (VIO) without any prior information using relative constraints computed by a stereo camera. Many works on VIO start their algorithm from a static state or a rough initial guess since an accurate initial velocity and attitude are not available at the early stage. Our approach estimates a relative pose of consecutive camera frames from a stereo visual odometry (VO), then formulates least-square problems from the IMU preintegration and the pose constraint. This recovers the initial velocity, attitude with respect to the gravity, and biases of an IMU. Also, we build a framework in which a tightly-coupled filtering-based VIO is booted by the proposed initialization method. We show that the initial state can be estimated with a 6-DOF motion in the simulated environment. Also, our experimental results reveal that 5 seconds with 20 fps stereo images are enough to initialize the filtering-based VIO in the public MAV dataset.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rapid Initialization using Relative Pose Constraints in Stereo Visual-Inertial Odometry\",\"authors\":\"J. Jung, J. Y. Chung, Jaehyuck Cha, Chan Gook Park\",\"doi\":\"10.1109/ICCA.2019.8899485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an initialization method to bootstrap a visual-inertial odometry (VIO) without any prior information using relative constraints computed by a stereo camera. Many works on VIO start their algorithm from a static state or a rough initial guess since an accurate initial velocity and attitude are not available at the early stage. Our approach estimates a relative pose of consecutive camera frames from a stereo visual odometry (VO), then formulates least-square problems from the IMU preintegration and the pose constraint. This recovers the initial velocity, attitude with respect to the gravity, and biases of an IMU. Also, we build a framework in which a tightly-coupled filtering-based VIO is booted by the proposed initialization method. We show that the initial state can be estimated with a 6-DOF motion in the simulated environment. Also, our experimental results reveal that 5 seconds with 20 fps stereo images are enough to initialize the filtering-based VIO in the public MAV dataset.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种初始化方法来引导视觉惯性里程计(VIO)在没有任何先验信息的情况下,利用立体摄像机计算的相对约束。由于在早期阶段无法获得准确的初始速度和姿态,因此VIO的许多工作都是从静态或粗略的初始猜测开始其算法的。我们的方法从立体视觉测程(VO)中估计连续相机帧的相对姿态,然后从IMU预积分和姿态约束中制定最小二乘问题。这恢复了初始速度、相对于重力的姿态和IMU的偏差。此外,我们还构建了一个框架,在该框架中,一个基于紧密耦合过滤的VIO由所建议的初始化方法引导。我们证明了在模拟环境中可以用六自由度运动来估计初始状态。此外,我们的实验结果表明,5秒20 fps的立体图像足以初始化公共MAV数据集中基于过滤的VIO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Initialization using Relative Pose Constraints in Stereo Visual-Inertial Odometry
In this paper, we propose an initialization method to bootstrap a visual-inertial odometry (VIO) without any prior information using relative constraints computed by a stereo camera. Many works on VIO start their algorithm from a static state or a rough initial guess since an accurate initial velocity and attitude are not available at the early stage. Our approach estimates a relative pose of consecutive camera frames from a stereo visual odometry (VO), then formulates least-square problems from the IMU preintegration and the pose constraint. This recovers the initial velocity, attitude with respect to the gravity, and biases of an IMU. Also, we build a framework in which a tightly-coupled filtering-based VIO is booted by the proposed initialization method. We show that the initial state can be estimated with a 6-DOF motion in the simulated environment. Also, our experimental results reveal that 5 seconds with 20 fps stereo images are enough to initialize the filtering-based VIO in the public MAV dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信