{"title":"针对高噪声信道的极- ldpc组合设计","authors":"I. Dumer, Navid Gharavi","doi":"10.1109/ITW48936.2021.9611452","DOIUrl":null,"url":null,"abstract":"We combine polar and LDPC codes to address data correction for various low-power applications. We first use long low-rate LDPC codes that have parity checks of a low weight. Decoding performs several iterations of the belief propagation (BP) algorithm that recalculates the information bits only. Partially corrected bits are then passed to a short polar code that uses successive cancellation list (SCL) decoder. The newly corrected bits then serve as the new inputs for an LDPC decoder. For codes of rate less than 0.1, the algorithm performs on par with a CA-SCL decoder, while substantially reducing its latency.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combined polar-LDPC design for channels with high noise\",\"authors\":\"I. Dumer, Navid Gharavi\",\"doi\":\"10.1109/ITW48936.2021.9611452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine polar and LDPC codes to address data correction for various low-power applications. We first use long low-rate LDPC codes that have parity checks of a low weight. Decoding performs several iterations of the belief propagation (BP) algorithm that recalculates the information bits only. Partially corrected bits are then passed to a short polar code that uses successive cancellation list (SCL) decoder. The newly corrected bits then serve as the new inputs for an LDPC decoder. For codes of rate less than 0.1, the algorithm performs on par with a CA-SCL decoder, while substantially reducing its latency.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined polar-LDPC design for channels with high noise
We combine polar and LDPC codes to address data correction for various low-power applications. We first use long low-rate LDPC codes that have parity checks of a low weight. Decoding performs several iterations of the belief propagation (BP) algorithm that recalculates the information bits only. Partially corrected bits are then passed to a short polar code that uses successive cancellation list (SCL) decoder. The newly corrected bits then serve as the new inputs for an LDPC decoder. For codes of rate less than 0.1, the algorithm performs on par with a CA-SCL decoder, while substantially reducing its latency.