通过持久和弹性块开发gpu中的sm内并行性

Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, M. Guo
{"title":"通过持久和弹性块开发gpu中的sm内并行性","authors":"Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, M. Guo","doi":"10.1109/ICCD53106.2021.00054","DOIUrl":null,"url":null,"abstract":"Emerging GPUs have multiple Streaming Multiprocessors (SM), while each SM is comprised of CUDA Cores and Tensor Cores. While CUDA Cores do the general computation, Tensor Cores are designed to speed up matrix multiplication for deep learning applications. However, a GPU kernel often either uses CUDA Cores or Tensor Cores, leaving the other processing units idle. Although many prior research works have been proposed to co-locate kernels to improve GPU utilization, they cannot leverage the Intra-SM CUDA Core-Tensor Core Parallelism. We therefore propose Plasticine to exploit the intra-SM parallelism for maximizing the GPU throughput. Plasticine involves compilation and runtime schedule to achieve the above purpose. Experimental results on an Nvidia 2080Ti GPU show that Plasticine improves the system-wide throughput by 15.3% compared with prior co-location work.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks\",\"authors\":\"Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, M. Guo\",\"doi\":\"10.1109/ICCD53106.2021.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging GPUs have multiple Streaming Multiprocessors (SM), while each SM is comprised of CUDA Cores and Tensor Cores. While CUDA Cores do the general computation, Tensor Cores are designed to speed up matrix multiplication for deep learning applications. However, a GPU kernel often either uses CUDA Cores or Tensor Cores, leaving the other processing units idle. Although many prior research works have been proposed to co-locate kernels to improve GPU utilization, they cannot leverage the Intra-SM CUDA Core-Tensor Core Parallelism. We therefore propose Plasticine to exploit the intra-SM parallelism for maximizing the GPU throughput. Plasticine involves compilation and runtime schedule to achieve the above purpose. Experimental results on an Nvidia 2080Ti GPU show that Plasticine improves the system-wide throughput by 15.3% compared with prior co-location work.\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

新兴的gpu有多个流多处理器(SM),而每个SM由CUDA核心和张量核心组成。虽然CUDA内核做一般计算,但Tensor内核的设计是为了加速深度学习应用的矩阵乘法。然而,GPU内核通常要么使用CUDA核心,要么使用张量核心,而让其他处理单元闲置。尽管许多先前的研究工作已经提出了共定位内核以提高GPU利用率,但它们无法利用sm内CUDA核心-张量核心并行性。因此,我们建议Plasticine利用sm内并行性来最大化GPU吞吐量。橡皮泥涉及到编译和运行时调度来实现上述目的。在Nvidia 2080Ti GPU上的实验结果表明,与之前的协同定位工作相比,Plasticine将系统范围的吞吐量提高了15.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks
Emerging GPUs have multiple Streaming Multiprocessors (SM), while each SM is comprised of CUDA Cores and Tensor Cores. While CUDA Cores do the general computation, Tensor Cores are designed to speed up matrix multiplication for deep learning applications. However, a GPU kernel often either uses CUDA Cores or Tensor Cores, leaving the other processing units idle. Although many prior research works have been proposed to co-locate kernels to improve GPU utilization, they cannot leverage the Intra-SM CUDA Core-Tensor Core Parallelism. We therefore propose Plasticine to exploit the intra-SM parallelism for maximizing the GPU throughput. Plasticine involves compilation and runtime schedule to achieve the above purpose. Experimental results on an Nvidia 2080Ti GPU show that Plasticine improves the system-wide throughput by 15.3% compared with prior co-location work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信