关于Gromov怪物群的Baum-Connes猜想

Martin Finn-Sell
{"title":"关于Gromov怪物群的Baum-Connes猜想","authors":"Martin Finn-Sell","doi":"10.4171/JNCG/231","DOIUrl":null,"url":null,"abstract":"We present a geometric approach to the Baum-Connes conjecture with coefficients for Gromov monster groups via a theorem of Khoskham and Skandalis. Secondly, we use recent results concerning the a-T-menability at infinity of large girth expanders to exhibit a family of coefficients for a Gromov monster group for which the Baum-Connes conjecture is an isomorphism.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Baum-Connes conjecture for Gromov monster groups\",\"authors\":\"Martin Finn-Sell\",\"doi\":\"10.4171/JNCG/231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a geometric approach to the Baum-Connes conjecture with coefficients for Gromov monster groups via a theorem of Khoskham and Skandalis. Secondly, we use recent results concerning the a-T-menability at infinity of large girth expanders to exhibit a family of coefficients for a Gromov monster group for which the Baum-Connes conjecture is an isomorphism.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用Khoskham和Skandalis的一个定理,给出了Gromov怪物群的带系数的Baum-Connes猜想的一个几何方法。其次,我们利用最近关于大周长展开机在无穷远处的a- t可通性的结果,给出了一个具有Baum-Connes猜想同构的Gromov怪物群的系数族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Baum-Connes conjecture for Gromov monster groups
We present a geometric approach to the Baum-Connes conjecture with coefficients for Gromov monster groups via a theorem of Khoskham and Skandalis. Secondly, we use recent results concerning the a-T-menability at infinity of large girth expanders to exhibit a family of coefficients for a Gromov monster group for which the Baum-Connes conjecture is an isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信