波浪与风对组合概念风wec响应的影响

M. Karimirad, C. Michailides
{"title":"波浪与风对组合概念风wec响应的影响","authors":"M. Karimirad, C. Michailides","doi":"10.1115/OMAE2018-77078","DOIUrl":null,"url":null,"abstract":"In the present paper, the effects of misaligned wave and wind action on the dynamic response of the WindWEC combined concept are evaluated and presented. WindWEC is a recently proposed combined wind and wave energy system; a hybrid offshore energy system that consists of: (a) a 5MW floating wind turbine supported by a spar-type substructure (e.g. Hywind), a Wave Energy Converter (WEC) that is of heaving buoy type (e.g. Wavestar), (c) a structural arm that connects the spar with the WEC and (d) a common mooring system. Hybrid offshore platforms are combining wave and wind energy systems and are designed in order to gain the possible synergy effects and reduce the cost of generated electrical power while increasing the quality of delivered power to grids. During the lifetime of a combined concept, wave and wind can be misaligned which may affect the dynamic response and as a result the functionality of it. In particular, for asymmetric configurations, the misalignment of the wave and wind may result in unexpected behaviour and significant effects that may reduce the produced power. For the case of the WindWEC concept, the relative motion of the spar platform and WEC buoy results to the produced power. In this paper, the dynamic response and power production of the buoy type WEC and wind turbine are examined for different loading conditions where the wave and wind are misaligned. Integrated/coupled aero-hydro-servo-elastic time-domain dynamic simulations considering multi-body analyses are applied. The motion, structural and tension responses as well as power production are examined. The misalignment of wave and wind results to higher loads that affect the mooring line system and motion responses of the spar. It is found that the produced power of wind turbine is not significantly affected.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of Misaligned Wave and Wind Action on the Response of the Combined Concept WindWEC\",\"authors\":\"M. Karimirad, C. Michailides\",\"doi\":\"10.1115/OMAE2018-77078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, the effects of misaligned wave and wind action on the dynamic response of the WindWEC combined concept are evaluated and presented. WindWEC is a recently proposed combined wind and wave energy system; a hybrid offshore energy system that consists of: (a) a 5MW floating wind turbine supported by a spar-type substructure (e.g. Hywind), a Wave Energy Converter (WEC) that is of heaving buoy type (e.g. Wavestar), (c) a structural arm that connects the spar with the WEC and (d) a common mooring system. Hybrid offshore platforms are combining wave and wind energy systems and are designed in order to gain the possible synergy effects and reduce the cost of generated electrical power while increasing the quality of delivered power to grids. During the lifetime of a combined concept, wave and wind can be misaligned which may affect the dynamic response and as a result the functionality of it. In particular, for asymmetric configurations, the misalignment of the wave and wind may result in unexpected behaviour and significant effects that may reduce the produced power. For the case of the WindWEC concept, the relative motion of the spar platform and WEC buoy results to the produced power. In this paper, the dynamic response and power production of the buoy type WEC and wind turbine are examined for different loading conditions where the wave and wind are misaligned. Integrated/coupled aero-hydro-servo-elastic time-domain dynamic simulations considering multi-body analyses are applied. The motion, structural and tension responses as well as power production are examined. The misalignment of wave and wind results to higher loads that affect the mooring line system and motion responses of the spar. It is found that the produced power of wind turbine is not significantly affected.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文评估并介绍了失向波和风的作用对WindWEC组合概念动力响应的影响。WindWEC是最近提出的风能和波浪能联合系统;一种混合海上能源系统,包括:(a)由桅杆型子结构(例如Hywind)支撑的5MW浮式风力涡轮机,(c)浮筒型波浪能转换器(WEC)(例如Wavestar), (c)连接桅杆与WEC的结构臂和(d)通用系泊系统。混合海上平台结合了波浪和风能系统,旨在获得可能的协同效应,降低发电成本,同时提高向电网输送电力的质量。在组合概念的生命周期内,波浪和风可能会错位,这可能会影响动态响应,从而影响其功能。特别是,对于不对称配置,波浪和风的不对齐可能导致意想不到的行为和显著的影响,可能会降低产生的功率。对于WindWEC概念,桅杆平台和WEC浮标的相对运动影响产生的功率。本文研究了浮筒式风力发电机组和风力发电机组在波浪风向失调的不同载荷条件下的动力响应和发电特性。采用考虑多体分析的一体化/耦合气动-液压-伺服-弹性时域动力学仿真。运动,结构和张力响应以及电力生产进行了检查。波浪与风的错位会导致更高的载荷,从而影响系泊索系统和桅杆的运动响应。结果表明,对风力机的发电功率影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Misaligned Wave and Wind Action on the Response of the Combined Concept WindWEC
In the present paper, the effects of misaligned wave and wind action on the dynamic response of the WindWEC combined concept are evaluated and presented. WindWEC is a recently proposed combined wind and wave energy system; a hybrid offshore energy system that consists of: (a) a 5MW floating wind turbine supported by a spar-type substructure (e.g. Hywind), a Wave Energy Converter (WEC) that is of heaving buoy type (e.g. Wavestar), (c) a structural arm that connects the spar with the WEC and (d) a common mooring system. Hybrid offshore platforms are combining wave and wind energy systems and are designed in order to gain the possible synergy effects and reduce the cost of generated electrical power while increasing the quality of delivered power to grids. During the lifetime of a combined concept, wave and wind can be misaligned which may affect the dynamic response and as a result the functionality of it. In particular, for asymmetric configurations, the misalignment of the wave and wind may result in unexpected behaviour and significant effects that may reduce the produced power. For the case of the WindWEC concept, the relative motion of the spar platform and WEC buoy results to the produced power. In this paper, the dynamic response and power production of the buoy type WEC and wind turbine are examined for different loading conditions where the wave and wind are misaligned. Integrated/coupled aero-hydro-servo-elastic time-domain dynamic simulations considering multi-body analyses are applied. The motion, structural and tension responses as well as power production are examined. The misalignment of wave and wind results to higher loads that affect the mooring line system and motion responses of the spar. It is found that the produced power of wind turbine is not significantly affected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信