相容R -矩阵下广义yangian中的KZ方程和Bethe子代数

D. Gurevich, P. Saponov, D. Talalaev
{"title":"相容R -矩阵下广义yangian中的KZ方程和Bethe子代数","authors":"D. Gurevich, P. Saponov, D. Talalaev","doi":"10.1093/INTEGR/XYZ005","DOIUrl":null,"url":null,"abstract":"\n The notion of compatible braidings was introduced in Isaev et al. (1999, J. Phys. A, 32, L115–L121). On the base of this notion, the authors of Isaev et al. (1999, J. Phys. A, 32, L115–L121) defined certain quantum matrix algebras generalizing the RTT algebras and Reflection Equation ones. They also defined analogues of some symmetric polynomials in these algebras and showed that these polynomials generate commutative subalgebras, called Bethe. By using a similar approach, we introduce certain new algebras called generalized Yangians and define analogues of some symmetric polynomials in these algebras. We claim that they commute with each other and thus generate a commutative Bethe subalgebra in each generalized Yangian. Besides, we define some analogues (also arising from couples of compatible braidings) of the Knizhnik–Zamolodchikov equation—classical and quantum.\n Communicated by: Alexander Veselov","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"KZ equations and Bethe subalgebras in generalized Yangians related to compatible $R$-matrices\",\"authors\":\"D. Gurevich, P. Saponov, D. Talalaev\",\"doi\":\"10.1093/INTEGR/XYZ005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The notion of compatible braidings was introduced in Isaev et al. (1999, J. Phys. A, 32, L115–L121). On the base of this notion, the authors of Isaev et al. (1999, J. Phys. A, 32, L115–L121) defined certain quantum matrix algebras generalizing the RTT algebras and Reflection Equation ones. They also defined analogues of some symmetric polynomials in these algebras and showed that these polynomials generate commutative subalgebras, called Bethe. By using a similar approach, we introduce certain new algebras called generalized Yangians and define analogues of some symmetric polynomials in these algebras. We claim that they commute with each other and thus generate a commutative Bethe subalgebra in each generalized Yangian. Besides, we define some analogues (also arising from couples of compatible braidings) of the Knizhnik–Zamolodchikov equation—classical and quantum.\\n Communicated by: Alexander Veselov\",\"PeriodicalId\":242196,\"journal\":{\"name\":\"Journal of Integrable Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/INTEGR/XYZ005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Isaev et al. (1999, J. Phys.)提出了兼容编织的概念。植物学报,32(2):115 - 121。基于这一概念,Isaev et al. (1999, J. Phys.;量子矩阵代数与反射方程代数的关系[j] .数学与工程学报,2009,(1):1 - 2。他们还在这些代数中定义了一些对称多项式的类似物,并表明这些多项式产生交换子代数,称为贝特。利用类似的方法,我们引入了一些新的代数,称为广义yangian,并在这些代数中定义了一些对称多项式的类似物。我们证明了它们是可交换的,从而在每一个广义Yangian中产生一个可交换的Bethe子代数。此外,我们定义了Knizhnik-Zamolodchikov方程的经典和量子的一些类似物(也由相容编织对产生)。通讯作者:Alexander Veselov
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KZ equations and Bethe subalgebras in generalized Yangians related to compatible $R$-matrices
The notion of compatible braidings was introduced in Isaev et al. (1999, J. Phys. A, 32, L115–L121). On the base of this notion, the authors of Isaev et al. (1999, J. Phys. A, 32, L115–L121) defined certain quantum matrix algebras generalizing the RTT algebras and Reflection Equation ones. They also defined analogues of some symmetric polynomials in these algebras and showed that these polynomials generate commutative subalgebras, called Bethe. By using a similar approach, we introduce certain new algebras called generalized Yangians and define analogues of some symmetric polynomials in these algebras. We claim that they commute with each other and thus generate a commutative Bethe subalgebra in each generalized Yangian. Besides, we define some analogues (also arising from couples of compatible braidings) of the Knizhnik–Zamolodchikov equation—classical and quantum. Communicated by: Alexander Veselov
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信