具有小删除概率的删除信道的紧渐近界

A. Kalai, M. Mitzenmacher, M. Sudan
{"title":"具有小删除概率的删除信道的紧渐近界","authors":"A. Kalai, M. Mitzenmacher, M. Sudan","doi":"10.1109/ISIT.2010.5513746","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the capacity C of the binary deletion channel for the limiting case where the deletion probability p goes to 0. It is known that for any p < 1/2, the capacity satisfies C ≥ 1−H(p), where H is the standard binary entropy. We show that this lower bound is essentially tight in the limit, by providing an upper bound C ≤ 1−(1−o(1))H(p), where the o(1) term is understood to be vanishing as p goes to 0. Our proof utilizes a natural counting argument that should prove helpful in analyzing related channels.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Tight asymptotic bounds for the deletion channel with small deletion probabilities\",\"authors\":\"A. Kalai, M. Mitzenmacher, M. Sudan\",\"doi\":\"10.1109/ISIT.2010.5513746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the capacity C of the binary deletion channel for the limiting case where the deletion probability p goes to 0. It is known that for any p < 1/2, the capacity satisfies C ≥ 1−H(p), where H is the standard binary entropy. We show that this lower bound is essentially tight in the limit, by providing an upper bound C ≤ 1−(1−o(1))H(p), where the o(1) term is understood to be vanishing as p goes to 0. Our proof utilizes a natural counting argument that should prove helpful in analyzing related channels.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

本文考虑了删除概率p趋于0的极限情况下二进制删除信道的容量C。已知对于任意p < 1/2,容量满足C≥1−H(p),其中H为标准二值熵。我们通过提供上界C≤1−(1−o(1))H(p)来证明这个下界本质上是紧的,其中o(1)项可以理解为在p趋于0时消失。我们的证明使用了一个自然计数论证,这将有助于分析相关通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight asymptotic bounds for the deletion channel with small deletion probabilities
In this paper, we consider the capacity C of the binary deletion channel for the limiting case where the deletion probability p goes to 0. It is known that for any p < 1/2, the capacity satisfies C ≥ 1−H(p), where H is the standard binary entropy. We show that this lower bound is essentially tight in the limit, by providing an upper bound C ≤ 1−(1−o(1))H(p), where the o(1) term is understood to be vanishing as p goes to 0. Our proof utilizes a natural counting argument that should prove helpful in analyzing related channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信