基于卷积神经网络的道路检测在移动机器人定位中的应用

J. Krejsa, S. Vechet
{"title":"基于卷积神经网络的道路检测在移动机器人定位中的应用","authors":"J. Krejsa, S. Vechet","doi":"10.21495/71-0-203","DOIUrl":null,"url":null,"abstract":"Mobile robot on-road navigation requires fusion of both global and local sensory information with an emphasis on the road detection processing. The paper deals with the road detection based on convolution neural networks (CNN) using commonly available tools such as TensorFlow and Keras. The road is defined by its linear boundaries. Network output is formed by the road definition together with classification parameters and serves as a local sensor in Kalman filter based localization. CNN based road detection is currently capable to successfully detect about 90% of images.","PeriodicalId":197313,"journal":{"name":"Engineering Mechanics 2019","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UTILIZATION OF CONVOLUTION NEURAL NETWORK BASED ROAD DETECTION IN MOBILE ROBOT LOCALIZATION\",\"authors\":\"J. Krejsa, S. Vechet\",\"doi\":\"10.21495/71-0-203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile robot on-road navigation requires fusion of both global and local sensory information with an emphasis on the road detection processing. The paper deals with the road detection based on convolution neural networks (CNN) using commonly available tools such as TensorFlow and Keras. The road is defined by its linear boundaries. Network output is formed by the road definition together with classification parameters and serves as a local sensor in Kalman filter based localization. CNN based road detection is currently capable to successfully detect about 90% of images.\",\"PeriodicalId\":197313,\"journal\":{\"name\":\"Engineering Mechanics 2019\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Mechanics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21495/71-0-203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Mechanics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21495/71-0-203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

移动机器人道路导航需要融合全局和局部感知信息,重点是道路检测处理。本文研究了基于卷积神经网络(CNN)的道路检测,使用常用的工具如TensorFlow和Keras。这条路是由它的线性边界划定的。网络输出由道路定义和分类参数组成,在基于卡尔曼滤波的定位中作为局部传感器。基于CNN的道路检测目前能够成功检测约90%的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UTILIZATION OF CONVOLUTION NEURAL NETWORK BASED ROAD DETECTION IN MOBILE ROBOT LOCALIZATION
Mobile robot on-road navigation requires fusion of both global and local sensory information with an emphasis on the road detection processing. The paper deals with the road detection based on convolution neural networks (CNN) using commonly available tools such as TensorFlow and Keras. The road is defined by its linear boundaries. Network output is formed by the road definition together with classification parameters and serves as a local sensor in Kalman filter based localization. CNN based road detection is currently capable to successfully detect about 90% of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信