通过遗传算法调整模型参数

A. Coroiu
{"title":"通过遗传算法调整模型参数","authors":"A. Coroiu","doi":"10.1109/ICCP.2016.7737135","DOIUrl":null,"url":null,"abstract":"The paper presents some techniques used to determine optimal values for the parameters model. The search methods used in our paper are: Conventional Grid Search, Randomized Grid Search and Genetic Algorithms (GAs). In a Conventional Grid Search on a data set all possible combinations of parameter values are evaluated and the best combination is retained. Randomized Grid Search realizes a randomized search over parameters, where each setting is sampled from a distribution over possible parameter values. An important benefit of this is that adding parameters that do not influence the performance does not decrease efficiency. GAs represent a successful method used to solve complex optimization problems. In this paper, we will use GAs to tune the optimal parameters which are required for different classification models. The paper proposes to compare the results achieved using these three methods of searching parameters for three classification models: Decision Trees, Random Forests and k-Nearest-Neighbors.","PeriodicalId":343658,"journal":{"name":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tuning model parameters through a Genetic Algorithm approach\",\"authors\":\"A. Coroiu\",\"doi\":\"10.1109/ICCP.2016.7737135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents some techniques used to determine optimal values for the parameters model. The search methods used in our paper are: Conventional Grid Search, Randomized Grid Search and Genetic Algorithms (GAs). In a Conventional Grid Search on a data set all possible combinations of parameter values are evaluated and the best combination is retained. Randomized Grid Search realizes a randomized search over parameters, where each setting is sampled from a distribution over possible parameter values. An important benefit of this is that adding parameters that do not influence the performance does not decrease efficiency. GAs represent a successful method used to solve complex optimization problems. In this paper, we will use GAs to tune the optimal parameters which are required for different classification models. The paper proposes to compare the results achieved using these three methods of searching parameters for three classification models: Decision Trees, Random Forests and k-Nearest-Neighbors.\",\"PeriodicalId\":343658,\"journal\":{\"name\":\"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2016.7737135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2016.7737135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了用于确定参数模型最优值的一些技术。本文使用的搜索方法有:常规网格搜索、随机网格搜索和遗传算法(GAs)。在对数据集的传统网格搜索中,对参数值的所有可能组合进行评估,并保留最佳组合。随机网格搜索实现了对参数的随机搜索,其中每个设置从可能的参数值分布中采样。这样做的一个重要好处是,添加不影响性能的参数不会降低效率。GAs是解决复杂优化问题的一种成功方法。在本文中,我们将使用GAs来调整不同分类模型所需的最优参数。本文对决策树、随机森林和k-近邻三种分类模型的参数搜索方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning model parameters through a Genetic Algorithm approach
The paper presents some techniques used to determine optimal values for the parameters model. The search methods used in our paper are: Conventional Grid Search, Randomized Grid Search and Genetic Algorithms (GAs). In a Conventional Grid Search on a data set all possible combinations of parameter values are evaluated and the best combination is retained. Randomized Grid Search realizes a randomized search over parameters, where each setting is sampled from a distribution over possible parameter values. An important benefit of this is that adding parameters that do not influence the performance does not decrease efficiency. GAs represent a successful method used to solve complex optimization problems. In this paper, we will use GAs to tune the optimal parameters which are required for different classification models. The paper proposes to compare the results achieved using these three methods of searching parameters for three classification models: Decision Trees, Random Forests and k-Nearest-Neighbors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信