1 x 1 Rush Hour with Fixed Blocks完成pspace

Josh Brunner, Lily Chung, E. Demaine, D. Hendrickson, Adam Hesterberg, Adam Suhl, Avi Zeff
{"title":"1 x 1 Rush Hour with Fixed Blocks完成pspace","authors":"Josh Brunner, Lily Chung, E. Demaine, D. Hendrickson, Adam Hesterberg, Adam Suhl, Avi Zeff","doi":"10.4230/LIPIcs.FUN.2021.7","DOIUrl":null,"url":null,"abstract":"Consider $n^2-1$ unit-square blocks in an $n \\times n$ square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable -- a variation of Rush Hour with only $1 \\times 1$ cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical $1 \\times 2$ and horizontal $2 \\times 1$ movable blocks and 4-color Subway Shuffle.","PeriodicalId":293763,"journal":{"name":"Fun with Algorithms","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"1 x 1 Rush Hour with Fixed Blocks is PSPACE-complete\",\"authors\":\"Josh Brunner, Lily Chung, E. Demaine, D. Hendrickson, Adam Hesterberg, Adam Suhl, Avi Zeff\",\"doi\":\"10.4230/LIPIcs.FUN.2021.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider $n^2-1$ unit-square blocks in an $n \\\\times n$ square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable -- a variation of Rush Hour with only $1 \\\\times 1$ cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical $1 \\\\times 2$ and horizontal $2 \\\\times 1$ movable blocks and 4-color Subway Shuffle.\",\"PeriodicalId\":293763,\"journal\":{\"name\":\"Fun with Algorithms\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fun with Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FUN.2021.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fun with Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FUN.2021.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

考虑$n^2-1$单位方块放在$n \ × n$方块中,其中每个方块被标记为水平移动(仅限)、垂直移动(仅限)或不可移动——这是《尖峰时刻》的变体,只有$1 \ × 1$的汽车和固定方块。我们通过2色地铁洗牌,从不确定性约束逻辑出发,证明了一个给定的块是否能到达棋盘的左边缘是pspace完全的。相比之下,多项式时间算法被认为是决定一个给定的块是否可以移动一个空间,或者每个块是不可移动的还是可以水平和垂直移动。我们的结果回答了Tromp和Cilibrasi长达15年的开放问题,并加强了之前关于高峰时刻的pspace -完备性结果,其中包含垂直$1 \乘以2$和水平$2 \乘以1$的可移动块和4色地铁Shuffle。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1 x 1 Rush Hour with Fixed Blocks is PSPACE-complete
Consider $n^2-1$ unit-square blocks in an $n \times n$ square board, where each block is labeled as movable horizontally (only), movable vertically (only), or immovable -- a variation of Rush Hour with only $1 \times 1$ cars and fixed blocks. We prove that it is PSPACE-complete to decide whether a given block can reach the left edge of the board, by reduction from Nondeterministic Constraint Logic via 2-color oriented Subway Shuffle. By contrast, polynomial-time algorithms are known for deciding whether a given block can be moved by one space, or when each block either is immovable or can move both horizontally and vertically. Our result answers a 15-year-old open problem by Tromp and Cilibrasi, and strengthens previous PSPACE-completeness results for Rush Hour with vertical $1 \times 2$ and horizontal $2 \times 1$ movable blocks and 4-color Subway Shuffle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信