集隶属度比例仿射投影算法的最优约束向量

M. Spelta, W. Martins
{"title":"集隶属度比例仿射投影算法的最优约束向量","authors":"M. Spelta, W. Martins","doi":"10.1109/SSP.2018.8450820","DOIUrl":null,"url":null,"abstract":"Sparsity is an inherent feature of certain practical systems and appears in problems such as channel equalization and echo cancellation. Designed for exploiting the intrinsic structure of sparse environments, while also taking advantage of the data reuse and selection strategies, the set-membership proportionate affine projection algorithm (SM-PAPA) relies on the choice of a constraint vector (CV) that affects the behavior of the adaptive system. Although the selection of this CV has been based on some heuristics, a recent work proposes an optimal CV for the set-membership affine projection algorithm, a particular instance of the SM-PAPA. This paper adopts a convex optimization framework and generalizes the optimal CV concept for the SM-PAPA, allowing its use in sparse systems. Moreover, by using the gradient projection method for solving the related constrained convex problem, this paper demonstrates that the optimal CV can indeed be applied in real-time applications.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Constraint Vectors for Set-Membership Proportionate Affine Projection Algorithms\",\"authors\":\"M. Spelta, W. Martins\",\"doi\":\"10.1109/SSP.2018.8450820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparsity is an inherent feature of certain practical systems and appears in problems such as channel equalization and echo cancellation. Designed for exploiting the intrinsic structure of sparse environments, while also taking advantage of the data reuse and selection strategies, the set-membership proportionate affine projection algorithm (SM-PAPA) relies on the choice of a constraint vector (CV) that affects the behavior of the adaptive system. Although the selection of this CV has been based on some heuristics, a recent work proposes an optimal CV for the set-membership affine projection algorithm, a particular instance of the SM-PAPA. This paper adopts a convex optimization framework and generalizes the optimal CV concept for the SM-PAPA, allowing its use in sparse systems. Moreover, by using the gradient projection method for solving the related constrained convex problem, this paper demonstrates that the optimal CV can indeed be applied in real-time applications.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稀疏性是某些实际系统的固有特性,经常出现在信道均衡和回波抵消等问题中。集合隶属度比例仿射投影算法(SM-PAPA)是为了利用稀疏环境的内在结构,同时利用数据重用和选择策略,依赖于约束向量(CV)的选择来影响自适应系统的行为。虽然这个CV的选择是基于一些启发式的,但最近的一项工作提出了一个集隶属度仿射投影算法的最优CV,这是SM-PAPA的一个特殊实例。本文采用凸优化框架,推广了SM-PAPA的最优CV概念,使其能够应用于稀疏系统。此外,利用梯度投影法求解相关的约束凸问题,证明了最优CV确实可以应用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Constraint Vectors for Set-Membership Proportionate Affine Projection Algorithms
Sparsity is an inherent feature of certain practical systems and appears in problems such as channel equalization and echo cancellation. Designed for exploiting the intrinsic structure of sparse environments, while also taking advantage of the data reuse and selection strategies, the set-membership proportionate affine projection algorithm (SM-PAPA) relies on the choice of a constraint vector (CV) that affects the behavior of the adaptive system. Although the selection of this CV has been based on some heuristics, a recent work proposes an optimal CV for the set-membership affine projection algorithm, a particular instance of the SM-PAPA. This paper adopts a convex optimization framework and generalizes the optimal CV concept for the SM-PAPA, allowing its use in sparse systems. Moreover, by using the gradient projection method for solving the related constrained convex problem, this paper demonstrates that the optimal CV can indeed be applied in real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信