{"title":"深度学习与手工特征的动作分类","authors":"Pablo A. Arias, J. Sepúlveda","doi":"10.1109/AIKE.2018.00039","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to determine if the advantage of the deep learned features over the hand-crafted ones, that is evidenced in the state of the art, is still maintained for actions that are carried out in a similar environment, for real applications. The comparison is performed using a dataset created specifically for the study, in which the actions that are carried out are very similar and with a common and noisy environment. The study shows that for a database with a limited number of videos and common environment it is better to consider the hand-crafted features than a shallow CNN architecture as feature extractor.","PeriodicalId":275673,"journal":{"name":"International Conference on Artificial Intelligence and Knowledge Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learned vs. Hand-Crafted Features for Action Classification\",\"authors\":\"Pablo A. Arias, J. Sepúlveda\",\"doi\":\"10.1109/AIKE.2018.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to determine if the advantage of the deep learned features over the hand-crafted ones, that is evidenced in the state of the art, is still maintained for actions that are carried out in a similar environment, for real applications. The comparison is performed using a dataset created specifically for the study, in which the actions that are carried out are very similar and with a common and noisy environment. The study shows that for a database with a limited number of videos and common environment it is better to consider the hand-crafted features than a shallow CNN architecture as feature extractor.\",\"PeriodicalId\":275673,\"journal\":{\"name\":\"International Conference on Artificial Intelligence and Knowledge Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Artificial Intelligence and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE.2018.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE.2018.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learned vs. Hand-Crafted Features for Action Classification
The purpose of this study is to determine if the advantage of the deep learned features over the hand-crafted ones, that is evidenced in the state of the art, is still maintained for actions that are carried out in a similar environment, for real applications. The comparison is performed using a dataset created specifically for the study, in which the actions that are carried out are very similar and with a common and noisy environment. The study shows that for a database with a limited number of videos and common environment it is better to consider the hand-crafted features than a shallow CNN architecture as feature extractor.