用于精确和快速的固体材料带隙预测的机器学习

Shomik Verma, S. Kajale, Rafael Gómez-Bombarelli
{"title":"用于精确和快速的固体材料带隙预测的机器学习","authors":"Shomik Verma, S. Kajale, Rafael Gómez-Bombarelli","doi":"10.1109/HPEC55821.2022.9926355","DOIUrl":null,"url":null,"abstract":"Semi-Iocal DFT tends to vastly underestimate the bandgap of materials. Here we propose a machine learning calibration workflow to improve the accuracy of cheap DFT calculations. We first compile a dataset of 25k materials with PBE and HSE calculations completed. Using this dataset, we benchmark various machine learning architectures and features to determine which results in the highest accuracy. The best technique is able to improve the accuracy of PBE 10-fold. We then expand the generalizability of the model by utilizing active learning to intelligently sample chemical space. Because HSE data is not available for these new materials, we develop an optimized high-throughput parallelized workflow to calculate HSE bandgaps of lOk additional materials. We therefore develop a cheap, accurate, and generalized ML model for bandgap prediction.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for accurate and fast bandgap prediction of solid-state materials\",\"authors\":\"Shomik Verma, S. Kajale, Rafael Gómez-Bombarelli\",\"doi\":\"10.1109/HPEC55821.2022.9926355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-Iocal DFT tends to vastly underestimate the bandgap of materials. Here we propose a machine learning calibration workflow to improve the accuracy of cheap DFT calculations. We first compile a dataset of 25k materials with PBE and HSE calculations completed. Using this dataset, we benchmark various machine learning architectures and features to determine which results in the highest accuracy. The best technique is able to improve the accuracy of PBE 10-fold. We then expand the generalizability of the model by utilizing active learning to intelligently sample chemical space. Because HSE data is not available for these new materials, we develop an optimized high-throughput parallelized workflow to calculate HSE bandgaps of lOk additional materials. We therefore develop a cheap, accurate, and generalized ML model for bandgap prediction.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半局部DFT往往大大低估了材料的带隙。本文提出了一种机器学习校准工作流程,以提高廉价DFT计算的准确性。我们首先编制了一个包含25k种材料的数据集,并完成了PBE和HSE的计算。使用此数据集,我们对各种机器学习架构和特征进行基准测试,以确定哪种结果具有最高的准确性。最好的技术可以使PBE的准确度提高10倍。然后,我们利用主动学习对化学空间进行智能采样,扩展了模型的可泛化性。由于这些新材料的HSE数据不可用,我们开发了一个优化的高通量并行工作流程来计算lOk附加材料的HSE带隙。因此,我们开发了一种廉价,准确和广义的ML模型用于带隙预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for accurate and fast bandgap prediction of solid-state materials
Semi-Iocal DFT tends to vastly underestimate the bandgap of materials. Here we propose a machine learning calibration workflow to improve the accuracy of cheap DFT calculations. We first compile a dataset of 25k materials with PBE and HSE calculations completed. Using this dataset, we benchmark various machine learning architectures and features to determine which results in the highest accuracy. The best technique is able to improve the accuracy of PBE 10-fold. We then expand the generalizability of the model by utilizing active learning to intelligently sample chemical space. Because HSE data is not available for these new materials, we develop an optimized high-throughput parallelized workflow to calculate HSE bandgaps of lOk additional materials. We therefore develop a cheap, accurate, and generalized ML model for bandgap prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信