具有新学习方案的多值神经元

Shin-Fu Wu, Shie-Jue Lee
{"title":"具有新学习方案的多值神经元","authors":"Shin-Fu Wu, Shie-Jue Lee","doi":"10.1109/IJCNN.2013.6707132","DOIUrl":null,"url":null,"abstract":"Multi-valued neuron (MVN) is an efficient technique for classification and regression. It is a neuron with complex-valued weights and inputs/output, and the output of the activation function is moving along the unit circle on the complex plane. Therefore, MVN may have more functionalities than sigmoidal or radial basis function neurons. In some cases, a pair of weighted sums would oscillate between two sectors and the learning process can hardly converge. Besides, many weighted sums may be located around the borders of each sector, which may cause bad performance in classification accuracy. In this paper, we propose two modifications of multivalued neuron. One is involved with moving boundaries and the other one with targets at the center of sectors. Experimental results show that the proposed modifications can improve the performance of MVN and help it to converge more efficiently.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-valued neuron with new learning schemes\",\"authors\":\"Shin-Fu Wu, Shie-Jue Lee\",\"doi\":\"10.1109/IJCNN.2013.6707132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-valued neuron (MVN) is an efficient technique for classification and regression. It is a neuron with complex-valued weights and inputs/output, and the output of the activation function is moving along the unit circle on the complex plane. Therefore, MVN may have more functionalities than sigmoidal or radial basis function neurons. In some cases, a pair of weighted sums would oscillate between two sectors and the learning process can hardly converge. Besides, many weighted sums may be located around the borders of each sector, which may cause bad performance in classification accuracy. In this paper, we propose two modifications of multivalued neuron. One is involved with moving boundaries and the other one with targets at the center of sectors. Experimental results show that the proposed modifications can improve the performance of MVN and help it to converge more efficiently.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6707132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6707132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多值神经元(MVN)是一种有效的分类和回归技术。它是一个具有复值权值和输入/输出的神经元,激活函数的输出沿复平面上的单位圆运动。因此,MVN可能比s型基或径向基神经元具有更多的功能。在某些情况下,一对加权和会在两个扇区之间振荡,学习过程很难收敛。此外,许多加权和可能位于每个扇区的边界附近,这可能会导致分类精度下降。本文提出了多值神经元的两种修正方法。一种涉及移动边界,另一种涉及在扇区中心的目标。实验结果表明,所提出的改进方法可以提高MVN的性能,使其更有效地收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-valued neuron with new learning schemes
Multi-valued neuron (MVN) is an efficient technique for classification and regression. It is a neuron with complex-valued weights and inputs/output, and the output of the activation function is moving along the unit circle on the complex plane. Therefore, MVN may have more functionalities than sigmoidal or radial basis function neurons. In some cases, a pair of weighted sums would oscillate between two sectors and the learning process can hardly converge. Besides, many weighted sums may be located around the borders of each sector, which may cause bad performance in classification accuracy. In this paper, we propose two modifications of multivalued neuron. One is involved with moving boundaries and the other one with targets at the center of sectors. Experimental results show that the proposed modifications can improve the performance of MVN and help it to converge more efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信