R. Kuzu, F. Albrecht, Caroline Arnold, Roshni Kamath, Kai Konen
{"title":"利用高光谱卫星图像预测土壤性质","authors":"R. Kuzu, F. Albrecht, Caroline Arnold, Roshni Kamath, Kai Konen","doi":"10.1109/ICIP46576.2022.9897254","DOIUrl":null,"url":null,"abstract":"The AI4EO Hyperview challenge seeks machine learning methods that predict agriculturally relevant soil parameters (K, Mg, P2O5, pH) from airborne hyperspectral images. We present a hybrid model fusing Random Forest and K-nearest neighbor regressors that exploit the average spectral reflectance, as well as derived features such as gradients, wavelet coefficients, and Fourier transforms. The solution is computationally lightweight and improves upon the challenge baseline by 21.9%, with the first place on the public leaderboard. In addition, we discuss neural network architectures and potential future improvements.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting Soil Properties from Hyperspectral Satellite Images\",\"authors\":\"R. Kuzu, F. Albrecht, Caroline Arnold, Roshni Kamath, Kai Konen\",\"doi\":\"10.1109/ICIP46576.2022.9897254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AI4EO Hyperview challenge seeks machine learning methods that predict agriculturally relevant soil parameters (K, Mg, P2O5, pH) from airborne hyperspectral images. We present a hybrid model fusing Random Forest and K-nearest neighbor regressors that exploit the average spectral reflectance, as well as derived features such as gradients, wavelet coefficients, and Fourier transforms. The solution is computationally lightweight and improves upon the challenge baseline by 21.9%, with the first place on the public leaderboard. In addition, we discuss neural network architectures and potential future improvements.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Soil Properties from Hyperspectral Satellite Images
The AI4EO Hyperview challenge seeks machine learning methods that predict agriculturally relevant soil parameters (K, Mg, P2O5, pH) from airborne hyperspectral images. We present a hybrid model fusing Random Forest and K-nearest neighbor regressors that exploit the average spectral reflectance, as well as derived features such as gradients, wavelet coefficients, and Fourier transforms. The solution is computationally lightweight and improves upon the challenge baseline by 21.9%, with the first place on the public leaderboard. In addition, we discuss neural network architectures and potential future improvements.