MultiAuth

Hao Kong, Li Lu, Jiadi Yu, Yingying Chen, Xiangyu Xu, Feilong Tang, Yi-Chao Chen
{"title":"MultiAuth","authors":"Hao Kong, Li Lu, Jiadi Yu, Yingying Chen, Xiangyu Xu, Feilong Tang, Yi-Chao Chen","doi":"10.1145/3466772.3467032","DOIUrl":null,"url":null,"abstract":"With the increasing integration of humans and the cyber world, user authentication becomes critical to support various emerging application scenarios requiring security guarantees. Existing works utilize Channel State Information (CSI) of WiFi signals to capture single human activities for non-intrusive and device-free user authentication, but multi-user authentication remains a challenging task. In this paper, we present a multi-user authentication system, MultiAuth, which can authenticate multiple users with a single commodity WiFi device. The key idea is to profile multipath components of WiFi signals induced by multiple users, and construct individual CSI from the multipath components to solely characterize each user for user authentication. Specifically, we propose a MUltipath Time-of-Arrival measurement algorithm (MUTA) to profile multipath components of WiFi signals in high resolution. Then, after aggregating and separating the multipath components related to users, MultiAuth constructs individual CSI based on the multipath components to solely characterize each user. To identify users, MultiAuth further extracts user behavior profiles based on the individual CSI of each user through time-frequency analysis, and leverages a dual-task neural network for robust user authentication. Extensive experiments involving 3 simultaneously present users demonstrate that MultiAuth is accurate and reliable for multi-user authentication with 87.6% average accuracy and 8.8% average false accept rate.","PeriodicalId":444729,"journal":{"name":"Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"MultiAuth\",\"authors\":\"Hao Kong, Li Lu, Jiadi Yu, Yingying Chen, Xiangyu Xu, Feilong Tang, Yi-Chao Chen\",\"doi\":\"10.1145/3466772.3467032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing integration of humans and the cyber world, user authentication becomes critical to support various emerging application scenarios requiring security guarantees. Existing works utilize Channel State Information (CSI) of WiFi signals to capture single human activities for non-intrusive and device-free user authentication, but multi-user authentication remains a challenging task. In this paper, we present a multi-user authentication system, MultiAuth, which can authenticate multiple users with a single commodity WiFi device. The key idea is to profile multipath components of WiFi signals induced by multiple users, and construct individual CSI from the multipath components to solely characterize each user for user authentication. Specifically, we propose a MUltipath Time-of-Arrival measurement algorithm (MUTA) to profile multipath components of WiFi signals in high resolution. Then, after aggregating and separating the multipath components related to users, MultiAuth constructs individual CSI based on the multipath components to solely characterize each user. To identify users, MultiAuth further extracts user behavior profiles based on the individual CSI of each user through time-frequency analysis, and leverages a dual-task neural network for robust user authentication. Extensive experiments involving 3 simultaneously present users demonstrate that MultiAuth is accurate and reliable for multi-user authentication with 87.6% average accuracy and 8.8% average false accept rate.\",\"PeriodicalId\":444729,\"journal\":{\"name\":\"Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466772.3467032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466772.3467032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
MultiAuth
With the increasing integration of humans and the cyber world, user authentication becomes critical to support various emerging application scenarios requiring security guarantees. Existing works utilize Channel State Information (CSI) of WiFi signals to capture single human activities for non-intrusive and device-free user authentication, but multi-user authentication remains a challenging task. In this paper, we present a multi-user authentication system, MultiAuth, which can authenticate multiple users with a single commodity WiFi device. The key idea is to profile multipath components of WiFi signals induced by multiple users, and construct individual CSI from the multipath components to solely characterize each user for user authentication. Specifically, we propose a MUltipath Time-of-Arrival measurement algorithm (MUTA) to profile multipath components of WiFi signals in high resolution. Then, after aggregating and separating the multipath components related to users, MultiAuth constructs individual CSI based on the multipath components to solely characterize each user. To identify users, MultiAuth further extracts user behavior profiles based on the individual CSI of each user through time-frequency analysis, and leverages a dual-task neural network for robust user authentication. Extensive experiments involving 3 simultaneously present users demonstrate that MultiAuth is accurate and reliable for multi-user authentication with 87.6% average accuracy and 8.8% average false accept rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信