基于差分递归神经网络的MAV姿态模型预测控制

Xiangjian Chen, Zhijun Xu, Di Li, Kehui Long
{"title":"基于差分递归神经网络的MAV姿态模型预测控制","authors":"Xiangjian Chen, Zhijun Xu, Di Li, Kehui Long","doi":"10.1109/IWISA.2010.5473505","DOIUrl":null,"url":null,"abstract":"An efficient differential recurrent neural network is developed in this paper, and the trained network can be used in the nonlinear model predictive control, and also predict the future dynamic behavior of the nonlinear process in real time. In the new training network, use Taylor series expansion and automatic differentiation techniques. The effectiveness of the differential recurrent neural network predictive model training and predictive controller demonstrated through the MAV attitude control. The differential recurrent neural network-based NMPC approach results in good control performance.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Recurrent Neural Network Based Model Predictive Control for the Control of MAV Attitude\",\"authors\":\"Xiangjian Chen, Zhijun Xu, Di Li, Kehui Long\",\"doi\":\"10.1109/IWISA.2010.5473505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient differential recurrent neural network is developed in this paper, and the trained network can be used in the nonlinear model predictive control, and also predict the future dynamic behavior of the nonlinear process in real time. In the new training network, use Taylor series expansion and automatic differentiation techniques. The effectiveness of the differential recurrent neural network predictive model training and predictive controller demonstrated through the MAV attitude control. The differential recurrent neural network-based NMPC approach results in good control performance.\",\"PeriodicalId\":298764,\"journal\":{\"name\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2010.5473505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种高效的微分递归神经网络,训练后的神经网络可用于非线性模型预测控制,并能实时预测非线性过程的未来动态行为。在新的训练网络中,采用泰勒级数展开和自动微分技术。通过对飞行器姿态控制的实验,验证了微分递归神经网络预测模型训练和预测控制器的有效性。基于微分递归神经网络的NMPC方法具有良好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Recurrent Neural Network Based Model Predictive Control for the Control of MAV Attitude
An efficient differential recurrent neural network is developed in this paper, and the trained network can be used in the nonlinear model predictive control, and also predict the future dynamic behavior of the nonlinear process in real time. In the new training network, use Taylor series expansion and automatic differentiation techniques. The effectiveness of the differential recurrent neural network predictive model training and predictive controller demonstrated through the MAV attitude control. The differential recurrent neural network-based NMPC approach results in good control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信