基于自动图像标注的SNS用户特征性别估计

Xiaojun Ma, Y. Tsuboshita, N. Kato
{"title":"基于自动图像标注的SNS用户特征性别估计","authors":"Xiaojun Ma, Y. Tsuboshita, N. Kato","doi":"10.1109/ICMEW.2014.6890569","DOIUrl":null,"url":null,"abstract":"User profiling for Social Network Services (SNS) has gained great attention because of its potential values in identifying target population, which is very informative for marketing. Many studies have been conducted to estimate SNS user profiles using text analysis. However, in spite of the huge quantities of image resources on SNS, no previous work has specifically explored user profiles by automatic image annotation techniques. This paper addresses the problem of inferring a SNS user's gender by automatic image annotation. The proposed method involves learning a model to annotate SNS images and integrating annotation scores of images to infer a user's gender. Evaluation based on Twitter data demonstrates promising results.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Gender estimation for SNS user profiling using automatic image annotation\",\"authors\":\"Xiaojun Ma, Y. Tsuboshita, N. Kato\",\"doi\":\"10.1109/ICMEW.2014.6890569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User profiling for Social Network Services (SNS) has gained great attention because of its potential values in identifying target population, which is very informative for marketing. Many studies have been conducted to estimate SNS user profiles using text analysis. However, in spite of the huge quantities of image resources on SNS, no previous work has specifically explored user profiles by automatic image annotation techniques. This paper addresses the problem of inferring a SNS user's gender by automatic image annotation. The proposed method involves learning a model to annotate SNS images and integrating annotation scores of images to infer a user's gender. Evaluation based on Twitter data demonstrates promising results.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

社交网络服务(SNS)的用户特征分析因其在识别目标人群方面的潜在价值而受到广泛关注,这对市场营销具有重要的信息价值。许多研究都是通过文本分析来估计SNS用户的个人资料。然而,尽管社交网络上的图像资源非常丰富,但目前还没有专门利用自动图像标注技术来探索用户档案的工作。本文研究了基于图像自动标注的SNS用户性别推断问题。该方法包括学习一个对SNS图片进行标注的模型,并结合图片的标注分数来推断用户的性别。基于Twitter数据的评估显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gender estimation for SNS user profiling using automatic image annotation
User profiling for Social Network Services (SNS) has gained great attention because of its potential values in identifying target population, which is very informative for marketing. Many studies have been conducted to estimate SNS user profiles using text analysis. However, in spite of the huge quantities of image resources on SNS, no previous work has specifically explored user profiles by automatic image annotation techniques. This paper addresses the problem of inferring a SNS user's gender by automatic image annotation. The proposed method involves learning a model to annotate SNS images and integrating annotation scores of images to infer a user's gender. Evaluation based on Twitter data demonstrates promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信