基数约束背包问题的约简策略

K. Pieńkosz
{"title":"基数约束背包问题的约简策略","authors":"K. Pieńkosz","doi":"10.1109/MMAR.2017.8046956","DOIUrl":null,"url":null,"abstract":"In the paper the Cardinality Constrained Knapsack Problem is considered. It is a variant of the Continuous Knapsack Problem in which no more than a specified number of variables are allowed to have positive values. This problem arises when a limited resource is allocated among competing activities, and an upper bound is imposed on the number of activities that can be selected in a solution. The Cardinality Constrained Knapsack Problem is NP-hard. We analyze the structural properties of its optimal solutions and propose procedure allowing to reduce the size of the original problem.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduction strategies for the Cardinality Constrained Knapsack problem\",\"authors\":\"K. Pieńkosz\",\"doi\":\"10.1109/MMAR.2017.8046956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper the Cardinality Constrained Knapsack Problem is considered. It is a variant of the Continuous Knapsack Problem in which no more than a specified number of variables are allowed to have positive values. This problem arises when a limited resource is allocated among competing activities, and an upper bound is imposed on the number of activities that can be selected in a solution. The Cardinality Constrained Knapsack Problem is NP-hard. We analyze the structural properties of its optimal solutions and propose procedure allowing to reduce the size of the original problem.\",\"PeriodicalId\":189753,\"journal\":{\"name\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2017.8046956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了受基数约束的背包问题。它是连续背包问题的一个变体,在连续背包问题中,不允许超过指定数量的变量具有正值。当在竞争活动之间分配有限的资源时,这个问题就出现了,并且可以在解决方案中选择的活动数量有一个上限。基数约束背包问题是np困难问题。我们分析了其最优解的结构性质,并提出了减小原问题规模的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction strategies for the Cardinality Constrained Knapsack problem
In the paper the Cardinality Constrained Knapsack Problem is considered. It is a variant of the Continuous Knapsack Problem in which no more than a specified number of variables are allowed to have positive values. This problem arises when a limited resource is allocated among competing activities, and an upper bound is imposed on the number of activities that can be selected in a solution. The Cardinality Constrained Knapsack Problem is NP-hard. We analyze the structural properties of its optimal solutions and propose procedure allowing to reduce the size of the original problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信