Gökberk Koçak, Ozgur Akgun, Ian Miguel, P. Nightingale
{"title":"具有任意边约束的封闭频繁项集挖掘","authors":"Gökberk Koçak, Ozgur Akgun, Ian Miguel, P. Nightingale","doi":"10.1109/ICDMW.2018.00175","DOIUrl":null,"url":null,"abstract":"Frequent itemset mining (FIM) is a method for finding regularities in transaction databases. It has several application areas, such as market basket analysis, genome analysis, and drug design. Finding frequent itemsets allows further analysis to focus on a small subset of the data. For large datasets the number of frequent itemsets can also be very large, defeating their purpose. Therefore, several extensions to FIM have been studied, such as adding high-utility (or low-cost) constraints and only finding closed (or maximal) frequent itemsets. This paper presents a constraint programming based approach that combines arbitrary side constraints with closed frequent itemset mining. Our approach allows arbitrary side constraints to be expressed in a high level and declarative language which is then translated automatically for efficient solution by a SAT solver. We compare our approach with state-of-the-art algorithms via the MiningZinc system (where possible) and show significant contributions in terms of performance and applicability.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Closed Frequent Itemset Mining with Arbitrary Side Constraints\",\"authors\":\"Gökberk Koçak, Ozgur Akgun, Ian Miguel, P. Nightingale\",\"doi\":\"10.1109/ICDMW.2018.00175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent itemset mining (FIM) is a method for finding regularities in transaction databases. It has several application areas, such as market basket analysis, genome analysis, and drug design. Finding frequent itemsets allows further analysis to focus on a small subset of the data. For large datasets the number of frequent itemsets can also be very large, defeating their purpose. Therefore, several extensions to FIM have been studied, such as adding high-utility (or low-cost) constraints and only finding closed (or maximal) frequent itemsets. This paper presents a constraint programming based approach that combines arbitrary side constraints with closed frequent itemset mining. Our approach allows arbitrary side constraints to be expressed in a high level and declarative language which is then translated automatically for efficient solution by a SAT solver. We compare our approach with state-of-the-art algorithms via the MiningZinc system (where possible) and show significant contributions in terms of performance and applicability.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed Frequent Itemset Mining with Arbitrary Side Constraints
Frequent itemset mining (FIM) is a method for finding regularities in transaction databases. It has several application areas, such as market basket analysis, genome analysis, and drug design. Finding frequent itemsets allows further analysis to focus on a small subset of the data. For large datasets the number of frequent itemsets can also be very large, defeating their purpose. Therefore, several extensions to FIM have been studied, such as adding high-utility (or low-cost) constraints and only finding closed (or maximal) frequent itemsets. This paper presents a constraint programming based approach that combines arbitrary side constraints with closed frequent itemset mining. Our approach allows arbitrary side constraints to be expressed in a high level and declarative language which is then translated automatically for efficient solution by a SAT solver. We compare our approach with state-of-the-art algorithms via the MiningZinc system (where possible) and show significant contributions in terms of performance and applicability.