λΠ-Calculus模理论中证明不相关的谓词子类型编码

Gabriel Hondet, F. Blanqui
{"title":"λΠ-Calculus模理论中证明不相关的谓词子类型编码","authors":"Gabriel Hondet, F. Blanqui","doi":"10.4230/LIPIcs.TYPES.2020.6","DOIUrl":null,"url":null,"abstract":"The $\\lambda$$\\Pi$-calculus modulo theory is a logical framework in which various logics and type systems can be encoded, thus helping the cross-verification and interoperability of proof systems based on those logics and type systems. In this paper, we show how to encode predicate subtyping and proof irrelevance, two important features of the PVS proof assistant. We prove that this encoding is correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the $\\lambda$$\\Pi$-calculus modulo theory using rewriting.","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Encoding of Predicate Subtyping with Proof Irrelevance in the λΠ-Calculus Modulo Theory\",\"authors\":\"Gabriel Hondet, F. Blanqui\",\"doi\":\"10.4230/LIPIcs.TYPES.2020.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\lambda$$\\\\Pi$-calculus modulo theory is a logical framework in which various logics and type systems can be encoded, thus helping the cross-verification and interoperability of proof systems based on those logics and type systems. In this paper, we show how to encode predicate subtyping and proof irrelevance, two important features of the PVS proof assistant. We prove that this encoding is correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the $\\\\lambda$$\\\\Pi$-calculus modulo theory using rewriting.\",\"PeriodicalId\":131421,\"journal\":{\"name\":\"Types for Proofs and Programs\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Types for Proofs and Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TYPES.2020.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2020.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

$\lambda$$\Pi$ -微积分模理论是一个逻辑框架,在这个逻辑框架中可以对各种逻辑和类型系统进行编码,从而有助于基于这些逻辑和类型系统的证明系统的交叉验证和互操作性。在本文中,我们展示了如何编码谓词子类型和证明无关性,这是PVS证明助手的两个重要特性。我们证明了这种编码是正确的,并且编码证明可以通过Dedukti进行机械检查,Dedukti是$\lambda$$\Pi$ -微积分模理论的类型检查器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding of Predicate Subtyping with Proof Irrelevance in the λΠ-Calculus Modulo Theory
The $\lambda$$\Pi$-calculus modulo theory is a logical framework in which various logics and type systems can be encoded, thus helping the cross-verification and interoperability of proof systems based on those logics and type systems. In this paper, we show how to encode predicate subtyping and proof irrelevance, two important features of the PVS proof assistant. We prove that this encoding is correct and that encoded proofs can be mechanically checked by Dedukti, a type checker for the $\lambda$$\Pi$-calculus modulo theory using rewriting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信