基于条件生成对抗网络的种群规模基因组数据增强

Junjie Chen, M. Mowlaei, Xinghua Shi
{"title":"基于条件生成对抗网络的种群规模基因组数据增强","authors":"Junjie Chen, M. Mowlaei, Xinghua Shi","doi":"10.1145/3388440.3412475","DOIUrl":null,"url":null,"abstract":"Although next generation sequencing technologies have made it possible to quickly generate a large collection of sequences, current genomic data still suffer from small data sizes, imbalances, and biases due to various factors including disease rareness, test affordability, and concerns about privacy and security. In order to address these limitations of genomic data, we develop a Population-scale Genomic Data Augmentation based on Conditional Generative Adversarial Networks (PG-cGAN) to enhance the amount and diversity of genomic data by transforming samples already in the data rather than collecting new samples. Both the generator and discriminator in the PG-CGAN are stacked with convolutional layers to capture the underlying population structure. Our results for augmenting genotypes in human leukocyte antigen (HLA) regions showed that PC-cGAN can generate new genotypes with similar population structure, variant frequency distributions and LD patterns. Since the input for PC-cGAN is the original genomic data without assumptions about prior knowledge, it can be extended to enrich many other types of biomedical data and beyond.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Population-scale Genomic Data Augmentation Based on Conditional Generative Adversarial Networks\",\"authors\":\"Junjie Chen, M. Mowlaei, Xinghua Shi\",\"doi\":\"10.1145/3388440.3412475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although next generation sequencing technologies have made it possible to quickly generate a large collection of sequences, current genomic data still suffer from small data sizes, imbalances, and biases due to various factors including disease rareness, test affordability, and concerns about privacy and security. In order to address these limitations of genomic data, we develop a Population-scale Genomic Data Augmentation based on Conditional Generative Adversarial Networks (PG-cGAN) to enhance the amount and diversity of genomic data by transforming samples already in the data rather than collecting new samples. Both the generator and discriminator in the PG-CGAN are stacked with convolutional layers to capture the underlying population structure. Our results for augmenting genotypes in human leukocyte antigen (HLA) regions showed that PC-cGAN can generate new genotypes with similar population structure, variant frequency distributions and LD patterns. Since the input for PC-cGAN is the original genomic data without assumptions about prior knowledge, it can be extended to enrich many other types of biomedical data and beyond.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

虽然下一代测序技术使快速生成大量序列成为可能,但目前的基因组数据仍然存在数据规模小、不平衡和偏见的问题,原因包括疾病的罕见性、测试的可负担性以及对隐私和安全的担忧。为了解决基因组数据的这些局限性,我们开发了一种基于条件生成对抗网络(PG-cGAN)的种群规模基因组数据增强方法,通过转换数据中已有的样本而不是收集新样本来增强基因组数据的数量和多样性。PG-CGAN中的生成器和鉴别器都用卷积层堆叠以捕获潜在的种群结构。结果表明,PC-cGAN可以产生具有相似群体结构、不同频率分布和LD模式的新基因型。由于PC-cGAN的输入是原始的基因组数据,没有对先验知识的假设,它可以扩展到丰富许多其他类型的生物医学数据,甚至更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population-scale Genomic Data Augmentation Based on Conditional Generative Adversarial Networks
Although next generation sequencing technologies have made it possible to quickly generate a large collection of sequences, current genomic data still suffer from small data sizes, imbalances, and biases due to various factors including disease rareness, test affordability, and concerns about privacy and security. In order to address these limitations of genomic data, we develop a Population-scale Genomic Data Augmentation based on Conditional Generative Adversarial Networks (PG-cGAN) to enhance the amount and diversity of genomic data by transforming samples already in the data rather than collecting new samples. Both the generator and discriminator in the PG-CGAN are stacked with convolutional layers to capture the underlying population structure. Our results for augmenting genotypes in human leukocyte antigen (HLA) regions showed that PC-cGAN can generate new genotypes with similar population structure, variant frequency distributions and LD patterns. Since the input for PC-cGAN is the original genomic data without assumptions about prior knowledge, it can be extended to enrich many other types of biomedical data and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信