基于卷积神经网络的医学图像自动分割

Sourour Mesbahi, Hedi Yazid
{"title":"基于卷积神经网络的医学图像自动分割","authors":"Sourour Mesbahi, Hedi Yazid","doi":"10.1109/ATSIP49331.2020.9231669","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network architecture for segmentation of medical images. We have chosen to test and implement various Convolutional Neural Network (CNN). We chose to apply this work on a topic of cerebral images segmentation containing brain tumors. The main objective is to choose the best architecture and parameterization applied into a task of a MRI brain tumor while treating a small database. Segmentation and learning assessment tests show good performance using our personalized CNN architecture.","PeriodicalId":384018,"journal":{"name":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic segmentation of medical images using convolutional neural networks\",\"authors\":\"Sourour Mesbahi, Hedi Yazid\",\"doi\":\"10.1109/ATSIP49331.2020.9231669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a neural network architecture for segmentation of medical images. We have chosen to test and implement various Convolutional Neural Network (CNN). We chose to apply this work on a topic of cerebral images segmentation containing brain tumors. The main objective is to choose the best architecture and parameterization applied into a task of a MRI brain tumor while treating a small database. Segmentation and learning assessment tests show good performance using our personalized CNN architecture.\",\"PeriodicalId\":384018,\"journal\":{\"name\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP49331.2020.9231669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP49331.2020.9231669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于医学图像分割的神经网络结构。我们选择测试和实现各种卷积神经网络(CNN)。我们选择将这项工作应用于包含脑肿瘤的脑图像分割主题。主要目的是在处理一个小数据库的同时,选择应用于MRI脑肿瘤任务的最佳架构和参数化。使用我们的个性化CNN架构进行的分割和学习评估测试显示了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic segmentation of medical images using convolutional neural networks
This paper presents a neural network architecture for segmentation of medical images. We have chosen to test and implement various Convolutional Neural Network (CNN). We chose to apply this work on a topic of cerebral images segmentation containing brain tumors. The main objective is to choose the best architecture and parameterization applied into a task of a MRI brain tumor while treating a small database. Segmentation and learning assessment tests show good performance using our personalized CNN architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信