基于决策树学习的设计模式检测复合记录聚类算法

Jing Dong, Yongtao Sun, Yajing Zhao
{"title":"基于决策树学习的设计模式检测复合记录聚类算法","authors":"Jing Dong, Yongtao Sun, Yajing Zhao","doi":"10.1109/IRI.2008.4583034","DOIUrl":null,"url":null,"abstract":"Recovering design patterns applied in a system can help refactoring the system. Machine learning algorithms have been successfully applied in mining data patterns. However, one of the main obstacles of applying them for design pattern detection is the difficulty of collecting training examples. Unlike other applications, a design pattern instance typically includes a group of classes with certain relationships. Thus, the possible combinations of the group of classes can be enormous which results in huge training sets making the application of machine learning algorithms impracticable. In this paper, we propose an innovative method using matrix transformations to cluster the training examples. Our method can significantly reduce the size of training examples, thus making it possible to be efficiently applied in machine learning algorithm.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Compound record clustering algorithm for design pattern detection by decision tree learning\",\"authors\":\"Jing Dong, Yongtao Sun, Yajing Zhao\",\"doi\":\"10.1109/IRI.2008.4583034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recovering design patterns applied in a system can help refactoring the system. Machine learning algorithms have been successfully applied in mining data patterns. However, one of the main obstacles of applying them for design pattern detection is the difficulty of collecting training examples. Unlike other applications, a design pattern instance typically includes a group of classes with certain relationships. Thus, the possible combinations of the group of classes can be enormous which results in huge training sets making the application of machine learning algorithms impracticable. In this paper, we propose an innovative method using matrix transformations to cluster the training examples. Our method can significantly reduce the size of training examples, thus making it possible to be efficiently applied in machine learning algorithm.\",\"PeriodicalId\":169554,\"journal\":{\"name\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"volume\":\"373 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2008.4583034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2008.4583034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

恢复系统中应用的设计模式可以帮助重构系统。机器学习算法已成功应用于数据模式挖掘。然而,将它们应用于设计模式检测的主要障碍之一是难以收集训练样例。与其他应用程序不同,设计模式实例通常包括一组具有特定关系的类。因此,类组的可能组合可能是巨大的,这导致巨大的训练集,使机器学习算法的应用变得不切实际。本文提出了一种利用矩阵变换对训练样本进行聚类的创新方法。我们的方法可以显著减少训练样例的大小,从而可以有效地应用于机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compound record clustering algorithm for design pattern detection by decision tree learning
Recovering design patterns applied in a system can help refactoring the system. Machine learning algorithms have been successfully applied in mining data patterns. However, one of the main obstacles of applying them for design pattern detection is the difficulty of collecting training examples. Unlike other applications, a design pattern instance typically includes a group of classes with certain relationships. Thus, the possible combinations of the group of classes can be enormous which results in huge training sets making the application of machine learning algorithms impracticable. In this paper, we propose an innovative method using matrix transformations to cluster the training examples. Our method can significantly reduce the size of training examples, thus making it possible to be efficiently applied in machine learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信