{"title":"电极位置对静电驱动MEMS谐振器动态特性的影响","authors":"M. Pustan, S. Paquay, V. Rochus, J. Golinval","doi":"10.1109/ESIME.2011.5765767","DOIUrl":null,"url":null,"abstract":"The influence of the lower electrode positions on the dynamic response of polysilicon MEMS resonators is studied and presented in this paper. The change in the frequency response of investigated MEMS resonators as function of the lower electrode positions is measured using a vibrometer analyzer. The decrease in the amplitude and velocity of oscillations if the lower electrode is moved from the beam free-end toward to the beam anchor is experimental monitored. The measurements are performed in ambient conditions in order to characterize the forced-response Q-factor of samples. A decrease of the Q- factor if the lower electrode is moved toward to the beam anchor is experimental determined. Different responses of MEMS resonators may be obtained if the position of the lower electrode is modified. Indeed the resonator stiffness, velocity and amplitude of oscillations are changed.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effects of the electrode positions on the dynamical behaviour of electrostatically actuated MEMS resonators\",\"authors\":\"M. Pustan, S. Paquay, V. Rochus, J. Golinval\",\"doi\":\"10.1109/ESIME.2011.5765767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of the lower electrode positions on the dynamic response of polysilicon MEMS resonators is studied and presented in this paper. The change in the frequency response of investigated MEMS resonators as function of the lower electrode positions is measured using a vibrometer analyzer. The decrease in the amplitude and velocity of oscillations if the lower electrode is moved from the beam free-end toward to the beam anchor is experimental monitored. The measurements are performed in ambient conditions in order to characterize the forced-response Q-factor of samples. A decrease of the Q- factor if the lower electrode is moved toward to the beam anchor is experimental determined. Different responses of MEMS resonators may be obtained if the position of the lower electrode is modified. Indeed the resonator stiffness, velocity and amplitude of oscillations are changed.\",\"PeriodicalId\":115489,\"journal\":{\"name\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2011.5765767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of the electrode positions on the dynamical behaviour of electrostatically actuated MEMS resonators
The influence of the lower electrode positions on the dynamic response of polysilicon MEMS resonators is studied and presented in this paper. The change in the frequency response of investigated MEMS resonators as function of the lower electrode positions is measured using a vibrometer analyzer. The decrease in the amplitude and velocity of oscillations if the lower electrode is moved from the beam free-end toward to the beam anchor is experimental monitored. The measurements are performed in ambient conditions in order to characterize the forced-response Q-factor of samples. A decrease of the Q- factor if the lower electrode is moved toward to the beam anchor is experimental determined. Different responses of MEMS resonators may be obtained if the position of the lower electrode is modified. Indeed the resonator stiffness, velocity and amplitude of oscillations are changed.