基于联合迭代子空间递归优化和网格搜索的降阶DOA估计

Lei Wang, R. D. Lamare, M. Haardt
{"title":"基于联合迭代子空间递归优化和网格搜索的降阶DOA估计","authors":"Lei Wang, R. D. Lamare, M. Haardt","doi":"10.1109/ICASSP.2010.5496256","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reduced-rank direction of arrival (DOA) estimation algorithm based on joint and iterative subspace optimization (JISO) with grid search . The reduced-rank scheme includes a rank reduction matrix and an auxiliary reduced-rank parameter vector. They are jointly and iteratively optimized with a recursive least squares algorithm (RLS) to calculate the output power spectrum. The proposed JISO-RLS DOA estimation algorithm provides an efficient way to iteratively estimate the rank reduction matrix and the auxiliary reduced-rank vector. It is suitable for DOA estimation with large arrays and can be extended to arbitrary array geometries. It exhibits an advantage over MUSIC and ESPRIT when many sources exist in the system. A spatial smoothing (SS) technique is employed for dealing with highly correlated sources. Simulation results show that the JISO-RLS has a better performance than existing Capon and subspace-based DOA estimation methods.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reduced-rank DOA estimation based on joint iterative subspace recursive optimization and grid search\",\"authors\":\"Lei Wang, R. D. Lamare, M. Haardt\",\"doi\":\"10.1109/ICASSP.2010.5496256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a reduced-rank direction of arrival (DOA) estimation algorithm based on joint and iterative subspace optimization (JISO) with grid search . The reduced-rank scheme includes a rank reduction matrix and an auxiliary reduced-rank parameter vector. They are jointly and iteratively optimized with a recursive least squares algorithm (RLS) to calculate the output power spectrum. The proposed JISO-RLS DOA estimation algorithm provides an efficient way to iteratively estimate the rank reduction matrix and the auxiliary reduced-rank vector. It is suitable for DOA estimation with large arrays and can be extended to arbitrary array geometries. It exhibits an advantage over MUSIC and ESPRIT when many sources exist in the system. A spatial smoothing (SS) technique is employed for dealing with highly correlated sources. Simulation results show that the JISO-RLS has a better performance than existing Capon and subspace-based DOA estimation methods.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5496256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5496256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种基于联合迭代子空间优化(JISO)和网格搜索的降阶到达方向估计算法。该降阶方案包括一个降阶矩阵和一个辅助降阶参数向量。采用递推最小二乘算法(RLS)对它们进行联合迭代优化,计算输出功率谱。提出的JISO-RLS DOA估计算法提供了一种迭代估计秩约简矩阵和辅助秩约简向量的有效方法。它适用于大型阵列的DOA估计,并可扩展到任意阵列几何形状。当系统中存在许多源时,它比MUSIC和ESPRIT更具优势。空间平滑(SS)技术用于处理高度相关的源。仿真结果表明,JISO-RLS比现有的基于Capon和子空间的DOA估计方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-rank DOA estimation based on joint iterative subspace recursive optimization and grid search
In this paper, we propose a reduced-rank direction of arrival (DOA) estimation algorithm based on joint and iterative subspace optimization (JISO) with grid search . The reduced-rank scheme includes a rank reduction matrix and an auxiliary reduced-rank parameter vector. They are jointly and iteratively optimized with a recursive least squares algorithm (RLS) to calculate the output power spectrum. The proposed JISO-RLS DOA estimation algorithm provides an efficient way to iteratively estimate the rank reduction matrix and the auxiliary reduced-rank vector. It is suitable for DOA estimation with large arrays and can be extended to arbitrary array geometries. It exhibits an advantage over MUSIC and ESPRIT when many sources exist in the system. A spatial smoothing (SS) technique is employed for dealing with highly correlated sources. Simulation results show that the JISO-RLS has a better performance than existing Capon and subspace-based DOA estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信