多智能体旅行商问题惩罚函数模拟退火算法的改进

Tianchen Ren, Jiayi Yang, Jinxin Li
{"title":"多智能体旅行商问题惩罚函数模拟退火算法的改进","authors":"Tianchen Ren, Jiayi Yang, Jinxin Li","doi":"10.1145/3501774.3501795","DOIUrl":null,"url":null,"abstract":"To solve the MTSP and discover the efficiency of different methods, this paper compares Monte Carlo with Simulating Annealing Algorithm by testing them in three sizes of map samples from small to large. The Monte Carlo can just solve the simple TSP problems and become useless due to its time and space complexity when the number of cities goes large. Therefore, we adopt a heuristic algorithm, Simulated Annealing. The Simulated Annealing Algorithm can solve the MTSP, although it is not the most optimal path, especially when an agent faces a group of clustered cities. To get a better result, this paper describes how to alternate the penalty function to set some limitations in the SAA and provide a better way to solve the MTSP when facing clustered group locations, which helps optimize the path in practice","PeriodicalId":255059,"journal":{"name":"Proceedings of the 2021 European Symposium on Software Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Improvement of Simulated Annealing Algorithm on the Penalty Function in Multi-agent Traveling Salesman Problem\",\"authors\":\"Tianchen Ren, Jiayi Yang, Jinxin Li\",\"doi\":\"10.1145/3501774.3501795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the MTSP and discover the efficiency of different methods, this paper compares Monte Carlo with Simulating Annealing Algorithm by testing them in three sizes of map samples from small to large. The Monte Carlo can just solve the simple TSP problems and become useless due to its time and space complexity when the number of cities goes large. Therefore, we adopt a heuristic algorithm, Simulated Annealing. The Simulated Annealing Algorithm can solve the MTSP, although it is not the most optimal path, especially when an agent faces a group of clustered cities. To get a better result, this paper describes how to alternate the penalty function to set some limitations in the SAA and provide a better way to solve the MTSP when facing clustered group locations, which helps optimize the path in practice\",\"PeriodicalId\":255059,\"journal\":{\"name\":\"Proceedings of the 2021 European Symposium on Software Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 European Symposium on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3501774.3501795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 European Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501774.3501795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决MTSP问题并发现不同方法的效率,本文通过在从小到大的三种地图样本中对蒙特卡罗算法和模拟退火算法进行了比较。蒙特卡罗算法只能解决简单的TSP问题,当城市数量变大时,由于时间和空间的复杂性,蒙特卡罗算法变得无用。因此,我们采用了一种启发式算法——模拟退火。模拟退火算法可以解决MTSP问题,尽管它不是最优路径,特别是当智能体面对一组聚集的城市时。为了获得更好的结果,本文描述了如何在SAA中替换惩罚函数来设置一些限制,并提供了一种更好的方法来解决面对集群群位置时的MTSP,这有助于在实践中优化路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Improvement of Simulated Annealing Algorithm on the Penalty Function in Multi-agent Traveling Salesman Problem
To solve the MTSP and discover the efficiency of different methods, this paper compares Monte Carlo with Simulating Annealing Algorithm by testing them in three sizes of map samples from small to large. The Monte Carlo can just solve the simple TSP problems and become useless due to its time and space complexity when the number of cities goes large. Therefore, we adopt a heuristic algorithm, Simulated Annealing. The Simulated Annealing Algorithm can solve the MTSP, although it is not the most optimal path, especially when an agent faces a group of clustered cities. To get a better result, this paper describes how to alternate the penalty function to set some limitations in the SAA and provide a better way to solve the MTSP when facing clustered group locations, which helps optimize the path in practice
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信