E. H. Shiguemori, J.D. Simoes de Silva, H.F. Campos-Velho
{"title":"估计热传导问题初始条件的神经网络系统","authors":"E. H. Shiguemori, J.D. Simoes de Silva, H.F. Campos-Velho","doi":"10.1109/IJCNN.2002.1007663","DOIUrl":null,"url":null,"abstract":"This paper describes a neural network approach to the inverse problem of determining the initial temperature distribution on a slab with adiabatic boundary conditions, from transient temperature distribution, obtained at a given time. Two neural network architectures have been proposed to address the problem: the multilayer perceptron with backpropagation and radial basis functions (RBF), both trained with the whole temperature history mapping. The conducted simulations showed RBF networks present better solutions, faster training, but higher noise sensitiveness, as compared to the multilayer perceptron with backpropagation.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural network systems for estimating the initial condition in a heat conduction problem\",\"authors\":\"E. H. Shiguemori, J.D. Simoes de Silva, H.F. Campos-Velho\",\"doi\":\"10.1109/IJCNN.2002.1007663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a neural network approach to the inverse problem of determining the initial temperature distribution on a slab with adiabatic boundary conditions, from transient temperature distribution, obtained at a given time. Two neural network architectures have been proposed to address the problem: the multilayer perceptron with backpropagation and radial basis functions (RBF), both trained with the whole temperature history mapping. The conducted simulations showed RBF networks present better solutions, faster training, but higher noise sensitiveness, as compared to the multilayer perceptron with backpropagation.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural network systems for estimating the initial condition in a heat conduction problem
This paper describes a neural network approach to the inverse problem of determining the initial temperature distribution on a slab with adiabatic boundary conditions, from transient temperature distribution, obtained at a given time. Two neural network architectures have been proposed to address the problem: the multilayer perceptron with backpropagation and radial basis functions (RBF), both trained with the whole temperature history mapping. The conducted simulations showed RBF networks present better solutions, faster training, but higher noise sensitiveness, as compared to the multilayer perceptron with backpropagation.