利用电话误差分布设计文本语料库进行声学建模

H. Murakami, K. Shinoda, S. Furui
{"title":"利用电话误差分布设计文本语料库进行声学建模","authors":"H. Murakami, K. Shinoda, S. Furui","doi":"10.1109/ASRU.2011.6163929","DOIUrl":null,"url":null,"abstract":"It is expensive to prepare a sufficient amount of training data for acoustic modeling for developing large vocabulary continuous speech recognition systems. This is a serious problem especially for resource-deficient languages. We propose an active learning method that effectively reduces the amount of training data without any degradation in recognition performance. It is used to design a text corpus for read speech collection. It first estimates phone-error distribution using a small amount of fully transcribed speech data. Second, it constructs a sentence set whose phone-occurrence distribution is close to the phone-error distribution and collects its speech data. It then extends this process to diphones and triphones and collects more speech data. We evaluated our method with simulation experiments using the Corpus of Spontaneous Japanese. It required only 76 h of speech data to achieve word accuracy of 74.7%, while the conventional training method required 152 h of data to achieve the same rate.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing text corpus using phone-error distribution for acoustic modeling\",\"authors\":\"H. Murakami, K. Shinoda, S. Furui\",\"doi\":\"10.1109/ASRU.2011.6163929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is expensive to prepare a sufficient amount of training data for acoustic modeling for developing large vocabulary continuous speech recognition systems. This is a serious problem especially for resource-deficient languages. We propose an active learning method that effectively reduces the amount of training data without any degradation in recognition performance. It is used to design a text corpus for read speech collection. It first estimates phone-error distribution using a small amount of fully transcribed speech data. Second, it constructs a sentence set whose phone-occurrence distribution is close to the phone-error distribution and collects its speech data. It then extends this process to diphones and triphones and collects more speech data. We evaluated our method with simulation experiments using the Corpus of Spontaneous Japanese. It required only 76 h of speech data to achieve word accuracy of 74.7%, while the conventional training method required 152 h of data to achieve the same rate.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为开发大词汇量连续语音识别系统,准备足够数量的声学建模训练数据是非常昂贵的。这是一个严重的问题,特别是对于资源缺乏的语言。我们提出了一种主动学习方法,可以有效地减少训练数据的数量,而不会降低识别性能。它被用来设计一个用于读语音收集的文本语料库。它首先使用少量完全转录的语音数据来估计电话错误分布。其次,构建一个电话-发生分布与电话-错误分布接近的句子集,并收集其语音数据;然后,它将这个过程扩展到双音和三音,并收集更多的语音数据。我们使用自发日语语料库进行模拟实验来评估我们的方法。它只需要76小时的语音数据就可以达到74.7%的单词准确率,而传统的训练方法需要152小时的数据才能达到相同的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing text corpus using phone-error distribution for acoustic modeling
It is expensive to prepare a sufficient amount of training data for acoustic modeling for developing large vocabulary continuous speech recognition systems. This is a serious problem especially for resource-deficient languages. We propose an active learning method that effectively reduces the amount of training data without any degradation in recognition performance. It is used to design a text corpus for read speech collection. It first estimates phone-error distribution using a small amount of fully transcribed speech data. Second, it constructs a sentence set whose phone-occurrence distribution is close to the phone-error distribution and collects its speech data. It then extends this process to diphones and triphones and collects more speech data. We evaluated our method with simulation experiments using the Corpus of Spontaneous Japanese. It required only 76 h of speech data to achieve word accuracy of 74.7%, while the conventional training method required 152 h of data to achieve the same rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信