基于统计概率模型检验的最优策略外推

A. Rataj, B. Wozna
{"title":"基于统计概率模型检验的最优策略外推","authors":"A. Rataj, B. Wozna","doi":"10.3233/FI-2018-1637","DOIUrl":null,"url":null,"abstract":"We show how to extrapolate an optimal policy controlling a model, which is itself too large to find the policy directly using probabilistic model checking (PMC). In particular, we look for a global optimal resolution of non–determinism in several small Markov Decision Processes (MDP) using PMC. We then use the resolution to find a respective set of decision boundaries representing the optimal policies found. Then, a hypothesis is formed on an extrapolation of these boundaries to an equivalent boundary in a large MDP. The resulting hypothetical extrapolated decision boundary is statistically approximately verified, whether it indeed represents an optimal policy for the large MDP. The verification either weakens or strengthens the hypothesis. The criterion of the optimality of the policy can be expressed in any modal logic that includes the probabilistic operator P∼p[·], and for which a PMC method exists.","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extrapolation of an Optimal Policy using Statistical Probabilistic Model Checking\",\"authors\":\"A. Rataj, B. Wozna\",\"doi\":\"10.3233/FI-2018-1637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to extrapolate an optimal policy controlling a model, which is itself too large to find the policy directly using probabilistic model checking (PMC). In particular, we look for a global optimal resolution of non–determinism in several small Markov Decision Processes (MDP) using PMC. We then use the resolution to find a respective set of decision boundaries representing the optimal policies found. Then, a hypothesis is formed on an extrapolation of these boundaries to an equivalent boundary in a large MDP. The resulting hypothetical extrapolated decision boundary is statistically approximately verified, whether it indeed represents an optimal policy for the large MDP. The verification either weakens or strengthens the hypothesis. The criterion of the optimality of the policy can be expressed in any modal logic that includes the probabilistic operator P∼p[·], and for which a PMC method exists.\",\"PeriodicalId\":286395,\"journal\":{\"name\":\"International Workshop on Concurrency, Specification and Programming\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Concurrency, Specification and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2018-1637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2018-1637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了如何外推控制模型的最优策略,该模型本身太大,无法使用概率模型检查(PMC)直接找到策略。特别地,我们使用PMC在几个小马尔可夫决策过程(MDP)中寻找非确定性的全局最优解决方案。然后,我们使用该决议来找到代表所找到的最优策略的一组决策边界。然后,将这些边界外推到大型MDP中的等效边界上形成假设。由此产生的假设外推决策边界在统计上得到近似验证,它是否确实代表了大型MDP的最优策略。验证要么削弱假设,要么加强假设。策略的最优性准则可以用包含概率算子P ~ P[·]的任何模态逻辑表示,并且存在PMC方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extrapolation of an Optimal Policy using Statistical Probabilistic Model Checking
We show how to extrapolate an optimal policy controlling a model, which is itself too large to find the policy directly using probabilistic model checking (PMC). In particular, we look for a global optimal resolution of non–determinism in several small Markov Decision Processes (MDP) using PMC. We then use the resolution to find a respective set of decision boundaries representing the optimal policies found. Then, a hypothesis is formed on an extrapolation of these boundaries to an equivalent boundary in a large MDP. The resulting hypothetical extrapolated decision boundary is statistically approximately verified, whether it indeed represents an optimal policy for the large MDP. The verification either weakens or strengthens the hypothesis. The criterion of the optimality of the policy can be expressed in any modal logic that includes the probabilistic operator P∼p[·], and for which a PMC method exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信